Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Modified Neuropixels probes for recording human neurophysiology in the operating room

Abstract

Neuropixels are silicon-based electrophysiology-recording probes with high channel count and recording-site density. These probes offer a turnkey platform for measuring neural activity with single-cell resolution and at a scale that is beyond the capabilities of current clinically approved devices. Our team demonstrated the first-in-human use of these probes during resection surgery for epilepsy or tumors and deep brain stimulation electrode placement in patients with Parkinson’s disease. Here, we provide a better understanding of the capabilities and challenges of using Neuropixels as a research tool to study human neurophysiology, with the hope that this information may inform future efforts toward regulatory approval of Neuropixels probes as research devices. In perioperative procedures, the major concerns are the initial sterility of the device, maintaining a sterile field during surgery, having multiple referencing and grounding schemes available to de-noise recordings (if necessary), protecting the silicon probe from accidental contact before insertion and obtaining high-quality action potential and local field potential recordings. The research team ensures that the device is fully operational while coordinating with the surgical team to remove sources of electrical noise that could otherwise substantially affect the signals recorded by the sensitive hardware. Prior preparation using the equipment and training in human clinical research and working in operating rooms maximize effective communication within and between the teams, ensuring high recording quality and minimizing the time added to the surgery. The perioperative procedure requires ~4 h, and the entire protocol requires multiple weeks.

Key points

  • This Protocol describes the structural reinforcement of Neuropixels 1.0-S, ensuring their correct insertion into the human cortex; the extensive perioperative procedures required to maintain sterile conditions; and coordination with the surgical team.

  • Neuropixels 1.0-S enables the recording of spiking activity from up to hundreds of cortical neurons, a feat currently not possible with single-neuron resolution devices such as microwire bundles, laminar microelectrode arrays, microelectrode contacts and the Utah array.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Recording human brain activity with the Neuropixels probe in the operating room.
Fig. 2: Neuropixels 1.0-S probe differences compared to the Neuropixels 1.0 probe (Box 1).
Fig. 3: Overall timeline of events required for the setup and data acquisition.
Fig. 4: Neuropixels probe and the materials and tools used for sterile preparation of the probe for recording and setup.
Fig. 5: Sequence of events for probe preparation.
Fig. 6: Preparation for holding the Neuropixels probe in two different OR settings.
Fig. 7: Electrode localization and DREDge motion registration for eventual spike sorting and mapping to cortical layers.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available for download at Dryad (https://doi.org/10.5061/dryad.d2547d840). Further datasets that were used in the study were neural reconstructions of human neurons from NeuroMorpho.Org 61–65 relative to the Neuropixels array and 1.5-mm Utah array. Neural reconstructions were from Neuromorpho.Org ID: NMO_86955, NMO_86997, NMO_109433, NMO_61420 and NMO_61421.

Code availability

Custom code described in this paper has been made available at https://github.com/Center-For-Neurotechnology/HumanNeuropixelsPipeline (currently without a license), which includes links to other useful repositories not maintained by the authors of this paper, with the exceptions of https://github.com/evarol/dredge (available under the Creative Commons Zero v1.0 Universal license) and https://github.com/williamunoz/InterpolationAfterDREDge (available under the MIT license).

References

  1. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dutta, B. et al. The Neuropixels probe: a CMOS based integrated microsystems platform for neuroscience and brain-computer interfaces. In 2019 IEEE International Electron Devices Meeting (IEDM) 10.1.1–10.1.4 https://doi.org/10.1109/IEDM19573.2019.8993611 (2019).

  4. Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. Nature 576, 266–273 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592, 86–92 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jia, X. et al. High-density extracellular probes reveal dendritic backpropagation and facilitate neuron classification. J. Neurophysiol. 121, 1831–1847 (2019).

    PubMed  Google Scholar 

  7. Trautmann, E. M. et al. Large-scale brain-wide neural recording in nonhuman primates. Preprint at bioRxiv https://doi.org/10.1101/2023.02.01.526664 (2023).

  8. Durand, S. et al. Acute head-fixed recordings in awake mice with multiple Neuropixels probes. Nat. Protoc. 18, 424–457 (2023).

    CAS  PubMed  Google Scholar 

  9. Trepka, E. B., Zhu, S., Xia, R., Chen, X. & Moore, T. Functional interactions among neurons within single columns of macaque V1. eLife 11, e79322 (2022).

    PubMed  PubMed Central  Google Scholar 

  10. Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M. & Harris, K. Fast and accurate spike sorting of high-channel count probes with KiloSort. Adv. Neural Inf. Process. Syst. 2016, 1–9 (2016).

    Google Scholar 

  11. Siegle, J. H. et al. Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology. J. Neural Eng. 14, 045003 (2017).

    PubMed  Google Scholar 

  12. Pachitariu, M., Sridhar, S. & Stringer, C. Solving the spike sorting problem with Kilosort. Preprint at bioRxiv https://doi.org/10.1101/2023.01.07.523036 (2023).

  13. Paulk, A. C. et al. Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex. Nat. Neurosci. 25, 252–263 (2022).

    CAS  PubMed  Google Scholar 

  14. Chung, J. E. et al. High-density single-unit human cortical recordings using the Neuropixels probe. Neuron 110, 2409–2421.e3 (2022).

    CAS  PubMed  Google Scholar 

  15. Chari, A., Thornton, R. C., Tisdall, M. M. & Scott, R. C. Microelectrode recordings in human epilepsy: a case for clinical translation. Brain Commun. 2, fcaa082 (2020).

    PubMed  PubMed Central  Google Scholar 

  16. Cash, S. S. & Hochberg, L. R. The emergence of single neurons in clinical neurology. Neuron 86, 79–91 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Amirnovin, R., Williams, Z. M., Cosgrove, G. R. & Eskandar, E. N. Experience with microelectrode guided subthalamic nucleus deep brain stimulation. Neurosurgery 58, ONS96–ONS102 (2006).

    PubMed  Google Scholar 

  18. Jamali, M. et al. Dorsolateral prefrontal neurons mediate subjective decisions and their variation in humans. Nat. Neurosci. 22, 1010–1020 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sheth, S. A. et al. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature 488, 218–221 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Feinsinger, A. et al. Ethical commitments, principles, and practices guiding intracranial neuroscientific research in humans. Neuron 110, 188–194 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Greely, H. T. et al. Neuroethics Guiding Principles for the NIH BRAIN Initiative. J. Neurosci. 38, 10586–10588 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Young, M. J. & Bernat, J. L. Emerging subspecialties in neurology: neuroethics: an emerging career path in neurology. Neurology 98, 505–508 (2022).

    PubMed  PubMed Central  Google Scholar 

  23. Goering, S. et al. Recommendations for responsible development and application of neurotechnologies. Neuroethics 14, 365–386 (2021).

    PubMed  PubMed Central  Google Scholar 

  24. Windolf, C. et al. Robust online multiband drift estimation in electrophysiology data. Preprint at bioRxiv https://doi.org/10.1101/2022.12.04.519043 (2022).

  25. Windolf, C. et al. Robust online multiband drift estimation in electrophysiology data. In ICASSP 2023 IEEE International Conference on Acoustics, Speech and Signal Processing https://doi.org/10.1109/ICASSP49357.2023.10095487 (2023).

  26. Allen, W. E. et al. Thirst regulates motivated behavior through modulation of brainwide neural population dynamics. Science 364, 0–10 (2019).

    Google Scholar 

  27. Trautmann, E. M. et al. Accurate estimation of neural population dynamics without spike sorting. Neuron 103, 292–308.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Juavinett, A. L., Bekheet, G. & Churchland, A. K. Chronically implanted Neuropixels probes enable high-yield recordings in freely moving mice. eLife 8, e47188 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Aguillon-Rodriguez, V. et al. Standardized and reproducible measurement of decision-making in mice. eLife 10, 1–28 (2021).

    Google Scholar 

  30. Barack, D. & Krakauer, J. W. Two views on the cognitive brain. Nat. Rev. Neurosci. 22, 359–371 (2021).

    CAS  PubMed  Google Scholar 

  31. Yuste, R. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015).

    CAS  PubMed  Google Scholar 

  32. Hesse, J. K. & Tsao, D. Y. A new no-report paradigm reveals that face cells encode both consciously perceived and suppressed stimuli. eLife 9, e58360 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. van Daal, R. J. J. et al. Implantation of Neuropixels probes for chronic recording of neuronal activity in freely behaving mice and rats. Nat. Protoc. 16, 3322–3347 (2021).

    PubMed  Google Scholar 

  34. Siegle, J. H. et al. Reconciling functional differences in populations of neurons recorded with two-photon imaging and electrophysiology. eLife 10, 1–35 (2021).

    Google Scholar 

  35. Zatka-Haas, P., Steinmetz, N. A., Carandini, M. & Harris, K. D. Sensory coding and the causal impact of mouse cortex in a visual decision. eLife 10, 1–25 (2021).

    Google Scholar 

  36. Truccolo, W. et al. Single-neuron dynamics in human focal epilepsy. Nat. Neurosci. 14, 635–641 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Truccolo, W. et al. Neuronal ensemble synchrony during human focal seizures. J. Neurosci. 34, 9927–9944 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jamali, M. et al. Single-neuronal predictions of others’ beliefs in humans. Nature 591, 610–614 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mian, M. K. et al. Encoding of rules by neurons in the human dorsolateral prefrontal cortex. Cereb. Cortex 24, 807–816 (2014).

    PubMed  Google Scholar 

  40. Patel, S. R. et al. Studying task-related activity of individual neurons in the human brain. Nat. Protoc. 8, 949–957 (2013).

    CAS  PubMed  Google Scholar 

  41. Aabedi, A. A. et al. Functional alterations in cortical processing of speech in glioma-infiltrated cortex. Proc. Natl Acad. Sci. USA. 118, e2108959118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ulbert, I., Halgren, E., Heit, G. & Karmos, G. Multiple microelectrode-recording system for human intracortical applications. J. Neurosci. Methods 106, 69–79 (2001).

    CAS  PubMed  Google Scholar 

  43. Maynard, E. M., Nordhausen, C. T. & Normann, R. A. The Utah Intracortical Electrode Array: a recording structure for potential brain-computer interfaces. Electroencephalogr. Clin. Neurophysiol. 102, 228–239 (1997).

    CAS  PubMed  Google Scholar 

  44. Nordhausen, C. T., Rousche, P. J. & Normann, R. A. Optimizing recording capabilities of the Utah Intracortical Electrode Array. Brain Res. 637, 27–36 (1994).

    CAS  PubMed  Google Scholar 

  45. Nordhausen, C. T., Maynard, E. M. & Normann, R. A. Single unit recording capabilities of a 100 microelectrode array. Brain Res. 726, 129–140 (1996).

    CAS  PubMed  Google Scholar 

  46. Hochberg, L. R. et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, 372–375 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006).

    CAS  PubMed  Google Scholar 

  48. Willett, F. R. et al. Hand knob area of premotor cortex represents the whole body in a compositional way. Cell 181, 1–14 (2020).

    Google Scholar 

  49. Slutzky, M. W. Brain–machine interfaces: powerful tools for clinical treatment and neuroscientific investigations. Neuroscientist 25, 139–154 (2019).

    PubMed  Google Scholar 

  50. Lebedev, M. A. & Nicolelis, M. A. L. Brain-machine interfaces: past, present and future. Trends Neurosci. 29, 536–546 (2006).

    CAS  PubMed  Google Scholar 

  51. Saha, S. et al. Progress in brain computer interface: challenges and opportunities. Front. Syst. Neurosci. 15, 1–20 (2021).

    Google Scholar 

  52. Tchoe, Y. et al. Human brain mapping with multi-thousand channel PtNRGrids resolves novel spatiotemporal dynamics. Sci. Transl. Med. 14, eabj1441 (2022).

    PubMed  PubMed Central  Google Scholar 

  53. Paulk, A. C. et al. Microscale physiological events on the human cortical surface. Cereb. Cortex 31, 3678–3700 (2021).

    PubMed  PubMed Central  Google Scholar 

  54. Yang, J. C. et al. Microscale dynamics of electrophysiological markers of epilepsy. Clin. Neurophysiol. 32, 2916–2931 (2021).

    Google Scholar 

  55. Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    CAS  PubMed  Google Scholar 

  56. Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sun, J. et al. Intraoperative microseizure detection using a high-density micro-electrocorticography electrode array. Brain Commun. 4, fcac122 (2022).

    PubMed  PubMed Central  Google Scholar 

  58. Khodagholy, D. et al. Organic electronics for high-resolution electrocorticography of the human brain. Sci. Adv. 2, e1601027 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Hassan, A. R. et al. Translational organic neural interface devices at single neuron resolution. Adv. Sci. (Weinh.) 9, e2202306 (2022).

    PubMed  Google Scholar 

  60. Ward, A. A. & Thomas, L. B. The electrical activity of single units in the cerebral cortex of man. Electroencephalogr. Clin. Neurophysiol. 7, 135–136 (1955).

    CAS  PubMed  Google Scholar 

  61. Verzeano, M., Crandall, P. H. & Dymond, A. Neuronal activity of the amygdala in patients with psychomotor epilepsy. Neuropsychologia 9, 331–344 (1971).

    CAS  PubMed  Google Scholar 

  62. Fried, I. et al. Cerebral microdialysis combined with single-neuron and electroencephalographic recording in neurosurgical patients: technical note. J. Neurosurg. 91, 697–705 (1999).

    CAS  PubMed  Google Scholar 

  63. Fried, I., Cameron, K. A., Yashar, S., Fong, R. & Morrow, J. W. Inhibitory and excitatory responses of single neurons in the human medial temporal lobe during recognition of faces and objects. Cereb. Cortex 12, 575–584 (2002).

    PubMed  Google Scholar 

  64. Worrell, G. A. et al. High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings. Brain 131, 928–937 (2008).

    PubMed  Google Scholar 

  65. Kleen, J. K. et al. Bidirectional propagation of low frequency oscillations over the human hippocampal surface. Nat. Commun. 12, 2764 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Musk, E. An integrated brain-machine interface platform with thousands of channels. Preprint at bioRxiv https://doi.org/10.1101/703801 (2019).

  67. Sahasrabuddhe, K. et al. The Argo: a high channel count recording system for neural recording in vivo. J. Neural Eng. 18, 015002 (2021).

    PubMed  PubMed Central  Google Scholar 

  68. Fiáth, R. et al. Slow insertion of silicon probes improves the quality of acute neuronal recordings. Sci. Rep. 9, 1–17 (2019).

    Google Scholar 

  69. Wang, Q., Yin, J. & Cui, H. Reinforcement of Neuropixels probes for high-density neural recording in non-human primates. In 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER) 128–131 (IEEE, 2021).

  70. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. Mercier, M. R. et al. Advances in human intracranial electroencephalography research, guidelines and good practices. Neuroimage 260, 119438 (2022).

    PubMed  Google Scholar 

  72. Duncan, D. et al. Data Archive for the BRAIN Initiative (DABI). Sci. Data 10, 83 (2023).

    PubMed  PubMed Central  Google Scholar 

  73. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).

    PubMed  Google Scholar 

  74. Bischoff-Grethe, A. et al. A technique for the deidentification of structural brain MR images. Hum. Brain Mapp. 28, 892–903 (2007).

    PubMed  PubMed Central  Google Scholar 

  75. Buimer, E. E. L. et al. De-identification procedures for magnetic resonance images and the impact on structural brain measures at different ages. Hum. Brain Mapp. 42, 3643–3655 (2021).

    PubMed  PubMed Central  Google Scholar 

  76. Holdgraf, C. et al. iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology. Sci. Data 6, 102 (2019).

    PubMed  PubMed Central  Google Scholar 

  77. Investigational Device Exemptions. 21 CFR § 812. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?CFRPart=812 (2023).

  78. U.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health (CDRH). Information Sheet Guidance for IRBs, Clinical Investigators, and Sponsors. Significant Risk and Nonsignificant Risk Medical Device Studies https://www.fda.gov/regulatory-information/search-fda-guidance-documents/significant-risk-and-nonsignificant-risk-medical-device-studies (2006).

  79. Kalb, S. IDE Basics. Investigational Device Exemption (IDE) Program Office of Device Evaluation, Center for Devices and Radiological Health U.S. Food and Drug Administration. https://www.fda.gov/media/127955/download (2014).

  80. Kleiner, M., Brainard, D. H. & Pelli, D. What’s new in Psychtoolbox-3? Perception 36, 1–16 (ECVP Abstract Supplement) (2007).

  81. Buccino, A. P. et al. SpikeInterface, a unified framework for spike sorting. eLife 9, e61834 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Williams, Z. M., Bush, G., Rauch, S. L., Cosgrove, G. R. & Eskandar, E. N. Human anterior cingulate neurons and the integration of monetary reward with motor responses. Nat. Neurosci. 7, 1370–1375 (2004).

    CAS  PubMed  Google Scholar 

  83. Felsenstein, O. & Peled, N. MMVT—multi-modality visualization tool. GitHub https://doi.org/10.5281/zenodo.438343 (2017).

  84. Reuter, M., Rosas, H. D. & Fischl, B. Highly accurate inverse consistent registration: a robust approach. Neuroimage 53, 1181–1196 (2010).

    PubMed  Google Scholar 

  85. Reuter, M., Schmansky, N. J., Rosas, H. D. & Fischl, B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61, 1402–1418 (2012).

    PubMed  Google Scholar 

  86. Holmes, C. J. et al. Enhancement of MR images using registration for signal averaging. J. Comput. Assist. Tomogr. 22, 324–333 (1998).

    CAS  PubMed  Google Scholar 

  87. Community, B. O. Blender—a 3D Modelling and Rendering Package (Blender Foundation, 2018).

  88. Chan, A. M. et al. Speech-specific tuning of neurons in human superior temporal gyrus. Cereb. Cortex 24, 2679–2693 (2014).

    PubMed  Google Scholar 

  89. Schevon, C. A., Goodman, R. R., McKhann, G. & Emerson, R. G. Propagation of epileptiform activity on a submillimeter scale. J. Clin. Neurophysiol. 27, 406–411 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Koch, C. & Jones, A. Big science, team science, and open science for neuroscience. Neuron 92, 612–616 (2016).

    CAS  PubMed  Google Scholar 

  91. Ascoli, G. A. Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nat. Rev. Neurosci. 7, 318–324 (2006).

    CAS  PubMed  Google Scholar 

  92. Ascoli, G. A., Donohue, D. E. & Halavi, M. NeuroMorpho.Org: a central resource for neuronal morphologies. J. Neurosci. 27, 9247–9251 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tóth, K. et al. Hyperexcitability of the network contributes to synchronization processes in the human epileptic neocortex. J. Physiol. 596, 317–342 (2018).

    PubMed  Google Scholar 

  94. Lancaster, J. L. et al. Automated analysis of fundamental features of brain structures. Neuroinformatics 9, 371–380 (2011).

    PubMed  PubMed Central  Google Scholar 

  95. Lancaster, J. L. et al. Anatomical global spatial normalization. Neuroinformatics 8, 171–182 (2010).

    PubMed  PubMed Central  Google Scholar 

  96. Lancaster, J. L. et al. Automated regional behavioral analysis for human brain images. Front. Neuroinform. 6, 1–12 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank Y. Chou, A. Tripp, F. Minidio, A. Zhang and A. O’Donnell for help in data collection, and we thank S. Shah and S. Sheth for manuscript input. We especially thank the patients for their willingness to participate in this research. This research was supported by the ECOR and K24-NS088568 (to S.S.C.), the Tiny Blue Dot Foundation (to S.S.C. and A.C.P.) and NIH grant U01NS121616 (to Z.M.W.). This research was also supported by NIH NINDS BRAIN R01NS11662301 (to K.V.S.), NIH NIDCD R01DC01403406 (to K.V.S.), the Simons Foundation (543045 to K.V.S. and 872146SPI to S.D.S.) the Howard Hughes Medical Institute at Stanford University (to K.V.S. and E.M.T.) and NIH/NINDS Neuroscience Resident Research Program R25NS065743 (to W.M.). S.D.S. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund. E.M.T. is additionally funded by the Brain and Behavior Research Foundation and the Grossman Institute. E.V. is funded by NIH NIMH 1K99MH128772-01A1. The views and conclusions contained in this document are those of the authors and do not represent the official policies, either expressed or implied, of the funding sources. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was conceived by S.S.C., Y.K., A.C.P., Z.M.W., K.V.S., L.R.H., E.M.T., W.M., I.C., M.J., D.M., B.C. and S.D.S. Z.M.W. and R.M.R. performed the surgeries and placed the arrays, while A.C.P., D.J.S., B.C., M.L.M., A.K., W.M., I.C., M.J., D.M., C.W., E.V. and Y.K. collected the data or did a first-pass analysis. A.C.P., B.C. and S.S.C. prepared the first manuscript draft. A.C.P., W.M., R.H., C.W. and Y.K. analyzed all the data for the final results, and A.C.P. and B.C. prepared all the figures. E.V. and C.W. developed software for analysis. All authors edited and revised the manuscript. B.D., M.W. and E.M.T. conceived of and advanced the production of the thicker custom Neuropixels probes with sharpened tips used in the study. The imec employees (B.D. and M.W.) are authors because of their technological development of the probe hardware and software and were not involved in these human pilot studies.

Corresponding authors

Correspondence to Ziv M. Williams, Sydney S. Cash or Angelique C. Paulk.

Ethics declarations

Competing interests

K.V.S. is a consultant to Neuralink Corp. and CTRL-Labs Inc. (now a part of the Meta Reality Labs division of Meta) and is on the Scientific Advisory Boards of Mind-X Inc., Inscopix Inc. and Heal Inc. The MGH Translational Research Center has clinical research support agreements with Neuralink, Paradromics and Synchron, for which S.S.C. and L.R.H. provide consultative input. None of these entities listed are involved with this research or the Neuropixels device. B.D. and M.W. are employees of imec, a non-profit semiconductor research and development organization that manufactures, sells and distributes the Neuropixels probes, at cost, to the research community. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Anton Arkhipov, Anne Churchland, Daniel Denman, Christoph Koch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Paulk, A. C. et al. Nat. Neurosci. 25, 252–263 (2022): https://doi.org/10.1038/s41593-021-00997-0

Windolf, C. et al. Presented at ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (2023): https://doi.org/10.1109/ICASSP49357.2023.10095487

Windolf, C. et al. Preprint (2022): https://doi.org/10.1101/2022.12.04.519043

Supplementary information

Supplementary Information

Supplementary Discussion, Table 1 and Figs. 1–5

Reporting Summary

Supplementary Video 1

Ongoing human brain neural activity recorded via Neuropixels and SpikeGLX and OpenEphys recording software, as recorded in the OR.

Supplementary Video 2

Demonstration of the additional electrical noise from the wall-powered anesthesia pump through a saline tube while recording in saline and gelatine.

Supplementary Video 3

Setting up the Neuropixels probe in the sterile field to be connected to the recording system.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coughlin, B., Muñoz, W., Kfir, Y. et al. Modified Neuropixels probes for recording human neurophysiology in the operating room. Nat Protoc 18, 2927–2953 (2023). https://doi.org/10.1038/s41596-023-00871-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00871-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing