Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Precise mutagenesis in zebrafish using cytosine base editors

Abstract

Base editing is a powerful CRISPR-based technology for introducing precise substitutions into the genome. This technology greatly advances mutagenesis possibilities in vivo, particularly in zebrafish, for which the generation of precise point mutations is still challenging. Zebrafish have emerged as an important model for genetic studies and in vivo disease modeling. With the development of different base editor variants that recognize protospacer-adjacent motifs (PAMs) other than the classical 5′-NGG-3′ PAM, it is now possible to design and test several guide RNAs to find the most efficient way to precisely introduce the desired substitution. Here, we describe the experimental design strategies and protocols for cytosine base editing in zebrafish, from guide RNA design and selection of base editor variants to generation of the zebrafish mutant line carrying the substitution of interest. By using co-selection by introducing a loss-of-function mutation in genes necessary for the formation of pigments, injected embryos with highly efficient base editing can be directly analyzed to determine the phenotypic impact of the targeted substitution. The generation of mutant embryos after base editor injections in zebrafish can be completed within 2 weeks.

Key points

  • Cytosine base editing can introduce specific C-to-T transitions in the genome. This protocol for cytosine base editing in zebrafish covers guide RNA design, selection of base editors and generation of mutant lines carrying the substitution of interest.

  • Compared with standard CRISPR–Cas9-based approaches, base editors generate precise substitutions without double-strand DNA breaks, improving efficiency over previous methods to generate zebrafish lines with precise human pathological mutations for in vivo disease modeling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CBE schematic representation.
Fig. 2
Fig. 3: Two examples of sgRNA designs for introducing C-to-T or G-to-A into a coding sequence by using a CBE.
Fig. 4: Procedure of the sgRNA screen and co-selection strategy based on depigmentation readout.
Fig. 5: Examples of gel images for plasmid digestion and BE mRNA quality.
Fig. 6: Example of transient base editing in zebrafish.

Similar content being viewed by others

Data availability

The data presented in Fig. 6 were generated for this protocol and are available from the corresponding authors upon request. Other data are available via the supporting primary research articles4,5.

References

  1. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rosello, M. et al. Disease modeling by efficient genome editing using a near PAM-less base editor in vivo. Nat. Commun. 13, 3435 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosello, M. et al. Precise base editing for the in vivo study of developmental signaling and human pathologies in zebrafish. eLife 10, e65552 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao, Y., Shang, D., Ying, R., Cheng, H. & Zhou, R. An optimized base editor with efficient C-to-T base editing in zebrafish. BMC Biol. 18, 190 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Qin, W. et al. Precise A•T to G•C base editing in the zebrafish genome. BMC Biol. 16, 139 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Liang, F. et al. SpG and SpRY variants expand the CRISPR toolbox for genome editing in zebrafish. Nat. Commun. 13, 3421 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cornean, A. et al. Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction. elife 11, e72124 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kantor, A., McClements, M. E. & MacLaren, R. E. CRISPR-Cas9 DNA base-editing and prime-editing. Int. J. Mol. Sci. 21, 6240 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeballos, C. M. & Gaj, T. Next-generation CRISPR technologies and their applications in gene and cell therapy. Trends Biotechnol. 39, 692–705 (2021).

    Google Scholar 

  12. Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discov. 19, 839–859 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sasaguri, H. et al. Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID. Nat. Commun. 9, 2892 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Wang, F. et al. Generation of a Hutchinson-Gilford progeria syndrome monkey model by base editing. Protein Cell 11, 809–824 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Carreras, A. et al. In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model. BMC Biol. 17, 4 (2019).

    PubMed  PubMed Central  Google Scholar 

  16. Zhang, H. et al. Adenine base editing in vivo with a single adeno-associated virus vector. GEN Biotechnol. 1, 285–299 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Xie, J. et al. Efficient base editing for multiple genes and loci in pigs using base editors. Nat. Commun. 10, 2852 (2019).

    PubMed  PubMed Central  Google Scholar 

  18. Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

    CAS  PubMed  Google Scholar 

  19. Santoriello, C. & Zon, L. I. Hooked! Modeling human disease in zebrafish. J. Clin. Invest. 122, 2337–2343 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bradford, Y. M. et al. Zebrafish models of human disease: gaining insight into human disease at ZFIN. ILAR J. 58, 4–16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Patton, E. E. & Tobin, D. M. Spotlight on zebrafish: the next wave of translational research. Dis. Model. Mech. 12, dmm039370 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Adamson, K. I., Sheridan, E. & Grierson, A. J. Use of zebrafish models to investigate rare human disease. J. Med. Genet. 55, 641–649 (2018).

    CAS  PubMed  Google Scholar 

  23. Mione, M. C. & Trede, N. S. The zebrafish as a model for cancer. Dis. Model. Mech. 3, 517–523 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schulze, L. et al. Transparent Danionella translucida as a genetically tractable vertebrate brain model. Nat. Methods 15, 977–983 (2018).

    CAS  PubMed  Google Scholar 

  25. Park, D. S. et al. Targeted base editing via RNA-guided cytidine deaminases in Xenopus laevis embryos. Mol. Cells 40, 823–827 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi, Z. et al. Modeling human point mutation diseases in Xenopus tropicalis with a modified CRISPR/Cas9 system. FASEB J. 33, 6962–6968 (2019).

    CAS  PubMed  Google Scholar 

  27. Li, S. et al. Universal toxin-based selection for precise genome engineering in human cells. Nat. Commun. 12, 497 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, D. et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39, 35–40 (2021).

    CAS  PubMed  Google Scholar 

  29. Chen, L. et al. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat. Commun. 12, 1384 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kurt, I. C. et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41–46 (2021).

    CAS  PubMed  Google Scholar 

  31. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Petri, K. et al. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Nat. Biotechnol. 40, 189–193 (2022).

    CAS  PubMed  Google Scholar 

  34. Armstrong, G. A. et al. Homology directed knockin of point mutations in the Zebrafish tardbp and fus genes in ALS using the CRISPR/Cas9 system. PloS One 11, e0150188 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Irion, U., Krauss, J. & Nusslein-Volhard, C. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 141, 4827–4830 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, Y., Huang, H., Zhang, B. & Lin, S. TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish. Methods Cell Biol. 135, 107–120 (2016).

    CAS  PubMed  Google Scholar 

  37. Prykhozhij, S. V. et al. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9. Nucleic Acids Res. 46, e102 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Albadri, S., Del Bene, F. & Revenu, C. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish. Methods 121–122, 77–85 (2017).

    PubMed  Google Scholar 

  39. Hoshijima, K., Jurynec, M. J. & Grunwald, D. J. Precise editing of the zebrafish genome made simple and efficient. Dev. Cell 36, 654–667 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wierson, W. A. et al. Efficient targeted integration directed by short homology in zebrafish and mammalian cells. eLife 9, e53968 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Burger, A. et al. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development 143, 2025–2037 (2016).

    CAS  PubMed  Google Scholar 

  42. Shah, A. N., Davey, C. F., Whitebirch, A. C., Miller, A. C. & Moens, C. B. Rapid reverse genetic screening using CRISPR in zebrafish. Nat. Methods 12, 535–540 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu, R. S. et al. A rapid method for directed gene knockout for screening in G0 zebrafish. Dev. Cell 46, 112–125.e4 (2018).

    CAS  PubMed  Google Scholar 

  44. Dooley, C. M. et al. Slc45a2 and V-ATPase are regulators of melanosomal pH homeostasis in zebrafish, providing a mechanism for human pigment evolution and disease. Pigment Cell Melanoma Res. 26, 205–217 (2013).

    CAS  PubMed  Google Scholar 

  45. Concordet, J. P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Grunewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rembold, M., Lahiri, K., Foulkes, N. S. & Wittbrodt, J. Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat. Protoc. 1, 1133–1139 (2006).

    CAS  PubMed  Google Scholar 

  48. Kluesner, M. G. et al. EditR: a method to quantify base editing from Sanger sequencing. CRISPR J. 1, 239–250 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Xing, L., Quist, T. S., Stevenson, T. J., Dahlem, T. J. & Bonkowsky, J. L. Rapid and efficient zebrafish genotyping using PCR with high-resolution melt analysis. J. Vis. Exp. 2014, e51138 (2014).

    Google Scholar 

Download references

Acknowledgements

We thank C. Giovannangeli and A. Miccio for helpful discussions and sharing plasmids. M.R. was supported by the Fondation pour la Recherche Médicale (FRM grant number ECO20170637481) and la Ligue Nationale Contre le Cancer. This work was supported by ANR-18-CE16 ‘iReelAx’, ANR-20-CE17-0020-02 ‘INCEPTION’, ANR-11-INBS-0014-TEFOR, UNADEV in partnership with ITMO NNP/AVIESAN (national alliance for life sciences and health, UNADEV-19UU51-DEL BENE), Fondation pour la Recherche Médicale (MND202003011485), in the framework of research on vision and IHU FOReSIGHT (ANR-18-IAHU-0001) supported by French state funds managed by the Agence Nationale de la Recherche within the Investissements d’Avenir program.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the protocol development. M.R. and M.S. did the experimental work. M.R. and F.D.B. wrote the manuscript with input and editing from J.-P.C. and M.S.

Corresponding authors

Correspondence to Marion Rosello or Filippo Del Bene.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Stephen Ekker and the other, anonymous, reviewers(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Rosello, M. et al. Nat. Commun. 13, 3435 (2022): https://doi.org/10.1038/s41467-022-31172-z

Rosello, M. et al. eLlife 10, e65552 (2021): https://doi.org/10.7554/eLife.65552

Source data

Source Data Fig. 5

Unprocessed gels

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosello, M., Serafini, M., Concordet, JP. et al. Precise mutagenesis in zebrafish using cytosine base editors. Nat Protoc 18, 2794–2813 (2023). https://doi.org/10.1038/s41596-023-00854-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00854-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing