Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Detect-seq, a chemical labeling and biotin pull-down approach for the unbiased and genome-wide off-target evaluation of programmable cytosine base editors

Abstract

Programmable cytosine base editors show promising approaches for correcting pathogenic mutations; yet, their off-target effects have been of great concern. Detect-seq (dU-detection enabled by C-to-T transition during sequencing) is an unbiased, sensitive method for the off-target evaluation of programmable cytosine base editors. It profiles the editome by tracing the editing intermediate dU, which is introduced inside living cells and edited by programmable cytosine base editors. The genomic DNA is extracted, preprocessed and labeled by successive chemical and enzymatic reactions, followed by biotin pull-down to enrich the dU-containing loci for sequencing. Here, we describe a detailed protocol for performing the Detect-seq experiment, and a customized, open-source, bioinformatic pipeline for analyzing the characteristic Detect-seq data is also provided. Unlike those previous whole-genome sequencing-based methods, Detect-seq uses an enrichment strategy and hence is endowed with great sensitivity, a higher signal-to-noise ratio and no requirement for high sequencing depth. Furthermore, Detect-seq is widely applicable for both mitotic and postmitotic biological systems. The entire protocol typically takes 5 d from the genomic DNA extraction to sequencing and ~1 week for data analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Detect-seq workflow.
Fig. 2: Quality control of a Detect-seq experiment.
Fig. 3: Detect-seq bioinformatic analysis.
Fig. 4: Identification of enriched, continuous tandem C-to-T mutation signals.
Fig. 5: Anticipated results of Detect-seq analysis.

Similar content being viewed by others

Data availability

All Detect-seq data used in this paper have been deposited at the NCBI GEO and are available under GEO accession numbers GSE173859 (Detect-seq data for DdCBE) and GSE151265 (Detect-seq data for BE4max). Human genome 38 was used as the reference genome.

Code availability

All custom codes for Detect-seq data analysis are deposited in GitHub (https://github.com/menghaowei/Detect-seq). To make it easier to repeat the data analysis process of Detect-seq, we also provide Snakemake workflow scripts in the GitHub repository.

References

  1. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).

    Article  PubMed  Google Scholar 

  3. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, F. Development of CRISPR-Cas systems for genome editing and beyond. Q Rev. Biophys. 52, e6 (2019).

    Article  Google Scholar 

  6. Dunbar, C. E. et al. Gene therapy comes of age. Science 359, eaan4672 (2018).

    Article  PubMed  Google Scholar 

  7. Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rees, H. A. et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8, 15790 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zuo, E. et al. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Nat. Methods 17, 600–604 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620–628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, L. et al. Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations. Nat. Cell Biol. 23, 552–563 (2021).

    Article  PubMed  Google Scholar 

  13. Lei, Z., Meng, H., Zhuang, Y., Zhu, Q. & Yi, C. Chemical and biological approaches to interrogate off-target effects of genome editing tools. ACS Chem. Biol. 18, 205–217 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Lei, Z. et al. Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors. Nat. Methods 18, 643–651 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Lei, Z. et al. Mitochondrial base editor induces substantial nuclear off-target mutations. Nature 606, 804–811 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Shu, X. et al. Genome-wide mapping reveals that deoxyuridine is enriched in the human centromeric DNA. Nat. Chem. Biol. 14, 680–687 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Zhu, C. et al. Single-cell 5-formylcytosine landscapes of mammalian early embryos and ESCs at single-base resolution. Cell Stem Cell 20, 720–731.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Zeng, H. et al. Bisulfite-free, nanoscale analysis of 5-hydroxymethylcytosine at single base resolution. J. Am. Chem. Soc. 140, 13190–13194 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xia, B. et al. Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Nat. Methods 12, 1047–1050 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song, C. X. et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153, 678–691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, L. et al. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat. Biotechnol. In press https://doi.org/10.1038/s41587-022-01532-7 (2022).

  22. Siriwardena, S. U., Chen, K. & Bhagwat, A. S. Functions and malfunctions of mammalian DNA-cytosine deaminases. Chem. Rev. 116, 12688–12710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matsumoto, Y. et al. Up-regulation of activation-induced cytidine deaminase causes genetic aberrations at the CDKN2b-CDKN2a in gastric cancer. Gastroenterology 139, 1984–1994 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Saraconi, G., Severi, F., Sala, C., Mattiuz, G. & Conticello, S. G. The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome Biol. 15, 417 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Burns, M. B., Temiz, N. A. & Harris, R. S. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat. Genet. 45, 977–983 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bae, S., Park, J. & Kim, J. S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Concordet, J. P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. & Valen, E. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 42, W401–W407 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, D. et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat. Biotechnol. 35, 475–480 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. McGrath, E. et al. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing. Nat. Commun. 10, 5353 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 17, 148 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kim, D., Kang, B. C. & Kim, J. S. Identifying genome-wide off-target sites of CRISPR RNA-guided nucleases and deaminases with Digenome-seq. Nat. Protoc. 16, 1170–1192 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Wei, Y. et al. Mitochondrial base editor DdCBE causes substantial DNA off-target editing in nuclear genome of embryos. Cell Discov. 8, 27 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tao, J., Bauer, D. E. & Chiarle, R. Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing. Nat. Commun. 14, 212 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, Y. et al. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. Nat. Biotechnol. 37, 424–429 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Bioinformatics analysis was performed on the High-Performance Computing Platform of the School of Life Sciences and High-Performance Computing Platform of the Center for Life Science. This work was supported by the National Key R&D Program (2019YFA0110900 and 2019YFA0802200), National Natural Science Foundation of China (nos. 21825701, 91953201, 92153303 and 22107006) and China Postdoctoral Science Foundation (2021M700238).

Author information

Authors and Affiliations

Authors

Contributions

Z.L., H.M. and C.Y. conceived and led the research. Z.L, H.M. and C.Y. wrote the manuscript with the help of X.R. and H.Z.

Corresponding author

Correspondence to Chengqi Yi.

Ethics declarations

Competing interests

Peking University has filed patent applications on Detect-seq described in this study, listing Z.L., H.M. and C.Y. as inventors.

Peer review

Peer review information

Nature Protocols thanks Sangsu Bae, Hui Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Lei, Z. et al. Nat. Methods 18, 643–651 (2021): https://doi.org/10.1038/s41592-021-01172-w

Lei, Z. et al. Nature 606, 804–811 (2022): https://doi.org/10.1038/s41586-022-04836-5

Supplementary information

Reporting Summary

Supplementary Table 1

Spike-in model sequence and qPCR primer sequence

Supplementary Table 2

An output example for the enrichment significance test results; this file is related to Fig. 4 and Step 51

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Z., Meng, H., Rao, X. et al. Detect-seq, a chemical labeling and biotin pull-down approach for the unbiased and genome-wide off-target evaluation of programmable cytosine base editors. Nat Protoc 18, 2221–2255 (2023). https://doi.org/10.1038/s41596-023-00837-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00837-4

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing