Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A distal lung organoid model to study interstitial lung disease, viral infection and human lung development

Abstract

Organoids have been an exciting advancement in stem cell research. Here we describe a strategy for directed differentiation of human pluripotent stem cells into distal lung organoids. This protocol recapitulates lung development by sequentially specifying human pluripotent stem cells to definitive endoderm, anterior foregut endoderm, ventral anterior foregut endoderm, lung bud organoids and finally lung organoids. The organoids take ~40 d to generate and can be maintained more than 180 d, while progressively maturing up to a stage consistent with the second trimester of human gestation. They are unique because of their branching morphology, the near absence of non-lung endodermal lineages, presence of mesenchyme and capacity to recapitulate interstitial lung diseases. This protocol can be performed by anyone familiar with cell culture techniques, is conducted in serum-free conditions and does not require lineage-specific reporters or enrichment steps. We also provide a protocol for the generation of single-cell suspensions for single-cell RNA sequencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the protocol.
Fig. 2: FBS-containing media does not maintain organoid cultures.
Fig. 3: Maturation of organoids and selection of suspension organoids for embedding.
Fig. 4: Morphology of lung organoids embedded in Col I gel.
Fig. 5: IF analysis of organoids at different stages.
Fig. 6: RT–qPCR analysis of the core and tip areas of a lung organoid.
Fig. 7: Integrated scRNAseq analysis.
Fig. 8: Merged scRNAseq analysis.
Fig. 9: Troubleshooting of LBO formation.

Similar content being viewed by others

Data availability

scRNAseq data are available in the Gene Expression Omnibus database (Gene Expression Omnibus Submission (GSE215825), access code Urihimewhncrbql). The RNAseq datasets that support the findings of this study are from ref. 20, and available from the Sequence Read Archive. The Sequence Read Archive accession number for d25 LBOs sequencing is SRP073749 and SRR4295269 for d170 LBOs. Source data are provided with this paper.

References

  1. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. McCauley, H. A. & Wells, J. M. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development 144, 958–962 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miller, A. J. & Spence, J. R. In vitro models to study human lung development, disease and homeostasis. Physiology 32, 246–260 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Basil, M. C. et al. The cellular and physiological basis for lung repair and regeneration: past, present, and future. Cell Stem Cell 26, 482–502 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Herriges, M. & Morrisey, E. E. Lung development: orchestrating the generation and regeneration of a complex organ. Development 141, 502–513 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Basil, M. C. et al. Human distal airways contain a multipotent secretory cell that can regenerate alveoli. Nature 604, 120–126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Habermann, A. C. et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci. Adv. 6, eaba1972 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kadur Lakshminarasimha Murthy, P. et al. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature 604, 111–119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morrisey, E. E. & Hogan, B. L. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev. Cell 18, 8–23 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burri, P. H. Fetal and postnatal development of the lung. Annu. Rev. Physiol. 46, 617–628 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Nikolić, M. Z., Sun, D. & Rawlins, E. L. Human lung development: recent progress and new challenges. Development 145, dev163485 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Herring, M. J., Putney, L. F., Wyatt, G., Finkbeiner, W. E. & Hyde, D. M. Growth of alveoli during postnatal development in humans based on stereological estimation. Am. J. Physiol. Lung Cell. Mol. Physiol. 307, L338–L344 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dye, B. R. et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. eLife 5, e19732 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dye, B. R. et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 4, e05098 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nikolic, M. Z. et al. Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids. eLife 6, e26575 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dekkers, J. F. et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 8, 344ra84 (2016).

    Article  PubMed  Google Scholar 

  17. Salahudeen, A. A. et al. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature 588, 670–675 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lamers, M. M. et al. An organoid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type II-like cells. EMBO J. 40, e105912 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jacob, A. et al. Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell 21, 472–488.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, Y. W. et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat. Cell Biol. 19, 542–549 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carvalho, A. L. R. T. de et al. Glycogen synthase kinase 3 induces multilineage maturation of human pluripotent stem cell-derived lung progenitors in 3D culture. Development 146, dev171652 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. Miller, A. J. et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat. Protoc. 14, 518–540 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hawkins, F. J. et al. Derivation of airway basal stem cells from human pluripotent stem cells. Cell Stem Cell 28, 79–95.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Gotoh, S. et al. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep. 3, 394–403 (2014).

    Article  CAS  Google Scholar 

  25. Masui, A., Hirai, T. & Gotoh, S. Perspectives of future lung toxicology studies using human pluripotent stem cells. Arch. Toxicol. 96, 389–402 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Konishi, S. et al. Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Rep. 6, 18–25 (2016).

    Article  CAS  Google Scholar 

  27. Porotto, M. et al. Authentic modeling of human respiratory virus infection in human pluripotent stem cell-derived lung organoids. mBio 10, e00723-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Strikoudis, A. et al. Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells. Cell Rep. 27, 3709–3723.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Green, M. D. et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat. Biotechnol. 29, 267–272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang, S. X. et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat. Biotechnol. 32, 84–91 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Roost, M. S. et al. KeyGenes, a tool to probe tissue differentiation using a human fetal transcriptional atlas. Stem Cell Rep. 4, 1112–1124 (2015).

    Article  CAS  Google Scholar 

  32. Hogan, B. L. et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15, 123–138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Renzoni, E. A., Poletti, V. & Mackintosh, J. A. Disease pathology in fibrotic interstitial lung disease: is it all about usual interstitial pneumonia? Lancet 398, 1437–1449 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Lederer, D. J. & Martinez, F. J. Idiopathic pulmonary fibrosis. N. Engl. J. Med. 378, 1811–1823 (2018).

    Article  CAS  Google Scholar 

  35. Katzen, J. & Beers, M. F. Contributions of alveolar epithelial cell quality control to pulmonary fibrosis. J. Clin. Invest. https://doi.org/10.1172/jci139519 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Armanios, M. Syndromes of telomere shortening. Annu. Rev. Genomics Hum. Genet. 10, 45–61 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Armanios, M. Telomerase mutations and the pulmonary fibrosis-bone marrow failure syndrome complex. N. Engl. J. Med. 367, 384 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Armanios, M. Y. et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med. 356, 1317–1326 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Garcia, C. K. Running short on time: lung transplant evaluation for telomere-related pulmonary fibrosis. Chest 147, 1450–1452 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Alder, J. K. & Armanios, M. Telomere-mediated lung disease. Physiol. Rev. https://doi.org/10.1152/physrev.00046.2021 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kelich, J. et al. Telomere dysfunction implicates POT1 in patients with idiopathic pulmonary fibrosis. J. Exp. Med. 219, e20211681 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dodson, L. M. et al. From incomplete penetrance with normal telomere length to severe disease and telomere shortening in a family with monoallelic and biallelic PARN pathogenic variants. Hum. Mutat. 40, 2414–2429 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stuart, B. D. et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat. Genet. 47, 512–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Petrovski, S. et al. An exome sequencing study to assess the role of rare genetic variation in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 196, 82–93 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barkauskas, C. E. et al. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest. https://doi.org/10.1172/JCI68782 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Moeller, A., Ask, K., Warburton, D., Gauldie, J. & Kolb, M. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int. J. Biochem. Cell Biol. 40, 362–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Matute-Bello, G., Frevert, C. W. & Martin, T. R. Animal models of acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 295, L379–L399 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mulugeta, S., Nureki, S. & Beers, M. F. Lost after translation: insights from pulmonary surfactant for understanding the role of alveolar epithelial dysfunction and cellular quality control in fibrotic lung disease. Am. J. Physiol. Lung Cell Mol. Physiol. 309, L507–L525 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Florin, T. A., Plint, A. C. & Zorc, J. J. Viral bronchiolitis. Lancet 389, 211–224 (2017).

    Article  PubMed  Google Scholar 

  50. Firth, A. L. et al. Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 111, E1723–E1730 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yamamoto, Y. et al. Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat. Methods 14, 1097–1106 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Goss, A. M. et al. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev. Cell 17, 290–298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chapman, D. L. et al. Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Dev. Dyn. 206, 379–390 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. McCauley, K. B. et al. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell 20, 844–857.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hawkins, F. et al. Prospective isolation of NKX2-1–expressing human lung progenitors derived from pluripotent stem cells. J. Clin. Invest. 127, 2277–2294 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jacob, A. et al. Derivation of self-renewing lung alveolar epithelial type II cells from human pluripotent stem cells. Nat. Protoc. 14, 3303–3332 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rodrigues Toste de Carvalho, A. L. et al. The in vitro multilineage differentiation and maturation of lung and airway cells from human pluripotent stem cell-derived lung progenitors in 3D. Nat. Protoc. 16, 1802–1829 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Kanagaki, S. et al. Directed induction of alveolar type I cells derived from pluripotent stem cells via Wnt signaling inhibition. Stem Cells 39, 156–169 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Rock, J. R. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106, 12771–12775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Butler, C. R. et al. Rapid expansion of human epithelial stem cells suitable for airway tissue engineering. Am. J. Respir. Crit. Care Med. 194, 156–168 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang, S. X. et al. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nat. Protoc. 10, 413–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Sherwood, R. I., Chen, T. Y. & Melton, D. A. Transcriptional dynamics of endodermal organ formation. Dev. Dyn. 238, 29–42 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol. 37, 685–691 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants NIH HL120046 (H.-W.S.), NIH 1U01HL134760 (H.-W.S.), NIH S10 OD032447 (H.-W.S.), NIH 5T32HL105323 (R.T.S., principal investigator: J. Bhattacharya) and the Parker B. Francis Fellowship (Y.-W.C.), and by the Thomas R. Kully IPF Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

Y.-W.C. originally developed the protocol and co-wrote the manuscript with H.-W.S., I.M.L. and R.T.S. played a key role in troubleshooting and perfecting the protocol. R.T.S. generated the images in Fig. 5. T.A.T. analyzed scRNAseq in collaboration with N.S. and K.B. who performed the scRNAseq, D.B. provided technical assistance, H.-Y.L. helped with optimizing and troubleshooting the protocol.

Corresponding authors

Correspondence to Ya-Wen Chen or Hans-Willem Snoeck.

Ethics declarations

Competing interests

H.-W.S. and Y.-W.C. hold patents pertaining to the lung organoid technologies described. The other authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Shuibing Chen, Robert Hynds and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Chen, Y. W. et al. Nat Cell Biol. 19, 542–549 (2017): https://doi.org/10.1038/ncb3510

Porotto, M. et al. mBio 10, e00723-19 (2019): https://doi.org/10.1128/mBio.00723-19

Strikoudis, A. et al. Cell Rep. 27, 3709–3723.e5 (2019): https://doi.org/10.1016/j.celrep.2019.05.077

Supplementary information

Source data

Source Data Figs. 3a and 6

Raw data and statistical analysis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matkovic Leko, I., Schneider, R.T., Thimraj, T.A. et al. A distal lung organoid model to study interstitial lung disease, viral infection and human lung development. Nat Protoc 18, 2283–2312 (2023). https://doi.org/10.1038/s41596-023-00827-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00827-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing