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Antibodies play an important role in the immune system by binding to molecules called antigens at their respective
epitopes. These interfaces or epitopes are structural entities determined by the interactions between an antibody and an
antigen, making them ideal systems to analyze by using docking programs. Since the advent of high-throughput antibody
sequencing, the ability to perform epitope mapping using only the sequence of the antibody has become a high priority.
ClusPro, a leading protein–protein docking server, together with its template-based modeling version, ClusPro-TBM, have
been re-purposed to map epitopes for specific antibody–antigen interactions by using the Antibody Epitope Mapping
server (AbEMap). ClusPro-AbEMap offers three different modes for users depending on the information available on the
antibody as follows: (i) X-ray structure, (ii) computational/predicted model of the structure or (iii) only the amino acid
sequence. The AbEMap server presents a likelihood score for each antigen residue of being part of the epitope. We
provide detailed information on the server’s capabilities for the three options and discuss how to obtain the best results.
In light of the recent introduction of AlphaFold2 (AF2), we also show how one of the modes allows users to use their AF2-
generated antibody models as input. The protocol describes the relative advantages of the server compared to other
epitope-mapping tools, its limitations and potential areas of improvement. The server may take 45–90 min depending on
the size of the proteins.

Introduction

Antibodies form one of the key arms of the adaptive immune system in vertebrates. They target
solvent-exposed proteins called antigens on the surfaces of pathogens. After recognition and contact,
the antibodies mediate the humoral immune response to the attached pathogen1. The diversity and
specificity of antibodies are the reason why harnessing their unique features is paramount in the
pharmaceutical industry. Understanding and accurately predicting atomic-level details of the
antibody–antigen interface are crucial for utilizing antibodies2. Finding the antigen residues in the
interface, henceforth called ‘epitope mapping’, can be useful for the design of monoclonal antibodies3,
for developing vaccines4 and for investigating immune responses5.

The development of methods for predicting antibody–antigen interactions and for antibody-based
drug discovery was traditionally handicapped by the difficulty of obtaining high numbers of antibody
sequences. However, because of advances in high-throughput single-cell and variable-diversity-
joining sequencing of the B-cell receptor repertoire6,7, the availability of antibody sequences is no
longer an issue in the race toward developing antibody-based drugs. Fast and accurate prediction of
the epitopes for these antibody targets has become the new bottleneck8. Currently, epitope mapping
efforts are dominated by experimental techniques such as X-ray crystallography, mutagenesis (e.g.,
alanine scanning) and phage display. X-ray crystallography is laborious and expensive, whereas
mutagenesis and phage display generally do not provide atomic-level details9. Importantly, none of
these experimental methods can be used in a high-throughput manner. In view of these limitations,
substantial efforts have been devoted to the development of computational epitope-mapping
methods10–15. However, epitope prediction for a given antigen and a given antibody is a difficult
computational problem that requires further development to improve the accuracy and reliability of
the predictions16. Part of the difficulty is due to the paucity of nonredundant structural data on
antibody–antigen interactions, because, as reported by Jespersen et al. in 2017, <25% of the
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antibody–antigen complexes found in the Protein Data Bank (PDB) are unique when taking a 70%
sequence identity threshold cutoff for the antigen17.

The challenge of epitope mapping can be partially addressed by finding residues on the antigen’s
surface that are most likely to interact with a generic antibody (as opposed to a specific antibody)10,12,17,18.
Some examples of such an approach are implemented in the servers Spatial Epitope Prediction for
Protein Antigens (SEPPA)10,12 and BEpro (formerly known as PEPITO)18. SEPPA uses a logistic
regression algorithm with features such as antigen residue surface accessibility and propensity for unit-
triangle patches (three residue groups on the antigen’s surface) among other factors to score the surface
residues10–12. BEpro adds an amino-acid propensity scale and side-chain orientations besides other
features18. Despite the achievements of the antibody-agnostic approach, it is crucial to highlight that
epitopes are, by definition, relational entities and that epitope mapping ought to be antibody specific. This
is evidenced by several antigens with particular affinities to different antibodies at different interfaces. A
well-studied example is hen egg lysozyme, which is crystallized with four different antibodies in the PDB
structures 1BVK, 1DQJ, 2I25 and 1MLC, with little overlap19–22. Therefore, consideration of both the
antibody and the antigen in epitope mapping not only is appropriate but generally also increases the
accuracy because more information can be gleaned from the antibody side4.

This relational nature of epitopes makes it especially attractive to approach the epitope-mapping
problem by using docking, which is a computational method that conventionally predicts the binding
mode of two biological units23. One fairly successful example of such methods is ClusPro24–26.
ClusPro is a webserver that directly docks two interacting proteins when given their X-ray structures.
The server is freely available to those in nonprofit organizations and is used by over 20,000 scientists
worldwide. It runs on a rigid-body docking program called ‘PIPER’, which uses a fast-Fourier
transform (FFT) correlation approach27. The interaction energy, which is composed of van der Waals
(vdW) energy terms (repulsive and attractive), electrostatic energy (Coulombic and Born approx-
imations) and a structure-based pairwise statistical potential, is used for ranking the docked models.
In 2012, a special antibody–antigen version of the pairwise statistical potential was introduced, vastly
improving antibody–antigen docking accuracy28. In a recent comparative study, ClusPro was
reported as the best server for antibody–antigen docking29. Hua et al. used the top 30 models
predicted by ClusPro and combined it with site-directed mutagenesis to localize epitopes on several
case studies successfully9. However, they also stated that docking alone or machine learning–based
methods did not provide unique epitope positions and had to be followed by experiments9. Krawczyk
and colleagues used a docking method in their epitope-mapping server EpiPred30. They used
ZDOCK, an FFT-based rigid-body docking method to generate models to score putative epitope
patches determined by geometric fitting30,31. More recently, Sikora and colleagues performed rigid-
body Monte Carlo docking of monoclonal antibody against glycosulated SARS-CoV2 spike protein
configurations to check for the accessibility of potential epitope candidates32.

One challenge that both Krawczyk et al. and Hua et al. faced, when using the EpiPred and ClusPro
servers, respectively, was the servers’ inability to work with sequences9,30. Working with sequences
requires a separate modeling step (which is not offered by EpiPred and ClusPro) if the antibody’s
X-ray structure is not available. However, as mentioned above, antibody sequencing has made major
advances over the past few years, whereas the technology for determining the X-ray structure of
antibodies has not substantially improved33,34. This limitation implies that epitope-mapping tools
should ideally include the ability to model the antibodies from their sequences in addition to mapping
the epitopes on the given antigen structure. As a response to this need, we present in this work an
end-to-end epitope-mapping server based on ClusPro’s docking protocol, ClusPro Antibody-based
Epitope Mapping (ClusPro-AbEMap), that offers template-based modeling of the antibody if an
X-ray structure is not available. The ClusPro-AbEMap server (https://abemap.cluspro.org/) integrates
our template-based modeling method35 and antigen–antibody contact prediction via docking36,37 to
identify the epitope of a given antigen structure from an antibody sequence or X-ray structure.

If the X-ray structure of the antibody is known, thousands of low-energy antibody–antigen models
predicted by PIPER—the rigid-body docking program on which ClusPro is based—are used to score
the antigen surface residues. If the X-ray structure of the antibody is unknown, AbEMap builds
multiple homology models of the antibody that are used for docking instead. The consensus of the
docked complexes based on all the antibody models and antigen structure templates is used to score the
antigen residues. For the model antibodies, special care should be taken not to penalize possible clashes,
by reducing the weight of the vdW component of the interaction energy. Although epitope prediction
remains a difficult computational problem, and clearly more method development is required, we
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present the protocol for AbEMap, which performs better than the popular peer servers SEPPA, BEpro
and EpiPred38.

Finally, we explore the potential use of deep neural network–based method AlphaFold2 for
antibody structure prediction as well as epitope mapping. It has been demonstrated in the CASP14
experiment and now is well established that AlphaFold2 substantially improves the accuracy of
predicting the structure of most monomeric proteins39–41. We show that AlphaFold2-modeled
antibodies perform nearly as well as our ensemble of template-based models. However, according to
our results, using the linker-based approach to predicting protein–protein interactions, which was
recently proposed by several groups42–45, does not improve the accuracy of AbEMap in finding
antibody epitopes.

The AbEMap algorithm and server overview
The server has two modes of running: the first requires an antibody structure as input, which can be
an X-ray structure or a precomputed homology model, and the second can perform epitope pre-
diction starting from the amino acid sequence of the antibody, assuming that appropriate antibody
homologous structures are available in the PDB. The antigen structure is assumed to be known in
both modes. The protocol for performing the second mode includes both homology modeling and
docking (Fig. 1a–f). It builds multiple (if applicable) antibody models that form an ensemble. Once
structures are available for both antibody and antigen, their mutual conformational space is sampled
by using PIPER26, the docking engine of the ClusPro server, and the 1,000 lowest-energy complex
poses are identified. When ClusPro is used for protein–protein docking, the 1,000 structures are
clustered, and the centers of the most-populated clusters are selected as models of the complex.
However, for epitope prediction, the 1,000 structures are instead used to calculate the frequency of
each antigen surface atom’s occurrence in the antibody–antigen interface. As will be shown, to map
an epitope, AbEMap defines the atomic epitope likelihood score as the Boltzmann weighted atomic
interface occurrence frequency averaged over the ensemble of antibody structures.

When given only amino acid sequences of the heavy and light chains of the antibody in the more
general second mode, ClusPro-AbEMap starts with a BLAST search for homologous structures in the
PDB (Fig. 1b). It restricts sequence identity to be above 20% and e-value below 1 × 10–40, but in case
no templates are found, the e-value threshold is increased to 1 × 10–20. Once the search is complete,
only templates with both heavy and light chains that meet the sequence constraints are retained. The
resulting templates are then ranked on the basis of both sequence identity and sequence similarity of
CDR3s in the heavy and light chains. For complementarity-determining region (CDR) detection, we
use the same tools as in the ClusPro server46. We take the five highest-ranked structures based on
CDR3 sequence identity and the five highest-ranked structures based on CDR3 sequence similarity
and use the union of the two sets as antibody templates. If the CDRs of the antibody cannot be
identified, or if there is no CDR (as in single-domain antigen receptors), then the five top candidates
ranked by the global sequence identity are selected. The second step is constructing homology models
of the antibody on the basis of the selected templates (Fig. 1c). MODELLER tools47 are used to realign
the antibody sequences, taking into account the template structural information. The program
models the backbone atoms of the non-aligned residues and all side chains, while the backbone atoms
of the aligned residues are kept fixed at the template coordinates. The single best model proposed by
MODELLER for each template is retained for the next step in the epitope-mapping process; thus,
AbeMap generally retains multiple antibody models.

When given an antibody X-ray structure or antibody models that have been already constructed,
the next step of AbEMap is global antibody–antigen docking by the PIPER program27 that directly
docks two protein structures (Fig. 1e). PIPER uses the FFT correlation approach48, which represents
the interaction energy of the complex as a weighted sum of correlations between the fixed receptor
and rotationally and translationally mobile ligand grids. Together with the FFT method, this
representation makes exhaustive conformational sampling of the six-dimensional energy landscape
computationally feasible. The standard level of discretization used in PIPER is 70,000 rotations from
the Sukharev quasi-uniform grid sequence49 (approximately 5 degrees by Euler angular step) and a
translational grid step size of 1 Å. The energy function E includes terms representing repulsive and
attractive components of the vdW energy (denoted as Erep and Eattr, respectively), a Columbic term
describing the electrostatic interaction energy (ECoul), a generalized Born-type polar solvation energy
term (EBorn) and another solvation term based on the structure-based statistical potential EDARS based
on the Decoys As the Reference State (DARS) approach50. A special antibody–antigen asymmetric

PROTOCOL NATURE PROTOCOLS

1816 NATURE PROTOCOLS | VOL 18 | JUNE 2023 | 1814–1840 |www.nature.com/nprot

www.nature.com/nprot


ClusPro AbeMap pipeline

a b c

d

g h k

i j l

e f

Antigen structure + antibody sequence BLAST Ensemble of 3D models

High-accuracy prediction

Docking ensemble with PIPER

Number of models
0

2

10

20

30

40

D
is

ta
nc

e 
fr

om
 n

at
iv

e,
 Å

50

60

70

80

5 10 15 20 25

1

0.8

0.6

0.4

RO
C

 A
U

C
 s

co
re

AbEMap

ClusPro AbEMap

AbEMap T1_template

EpiPred T1_template

SEPPA BEpro

Top 10 Top 20 Top 30 Top 40 Top 50

F1 score

MCC

0.2

0
0.4

0.3

0.2

0.1

0

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 18 | JUNE 2023 | 1814–1840 |www.nature.com/nprot 1817

www.nature.com/nprot


version of the DARS potential has been developed, significantly improving ClusPro’s
antibody–antigen docking accuracy28. This antibody–antigen–specific potential takes advantage of
the fact that aromatic residues dominate the paratope but not necessarily the epitope, whereas the
epitope generally has a higher level of hydrophobicity than the paratope.

To sample antibody–antigen interaction, the known antigen structure is docked to either the known
antibody X-ray structure or the ensemble of antibody homology models obtained in the previous step
from the antibody sequence data. Following our recently published protocol46, we mask all antibody
residues except for CDRs. The server shows results for the energy function currently used in ClusPro for
antibody–antigen docking (E = 0.5 Erep − 0.2 Eattr + 300 ECoul + 30 EBorn + 0.2 EDARS). If the input is a
computationally predicted or homology-modeled structure or just the antibody sequence, then results
for two additional weight sets are provided for the user as default: the option ‘No vdW’, which means
that the weights for both vdW contributions are zeroed out, and the option ‘Reduced attractive vdW’,
which implies that the weight for the attractive vdW term Eattr is halved. These additional weight sets
avoid penalizing possible steric clashes. However, it should be noted that the commonly used maximum
repulsive and minimum attractive vdW thresholds are still in place for all coefficients. Reducing the
vdW potential’s weights notably increased epitope prediction accuracy when using the AbEMap pro-
tocol when only the sequence of the antibody or homology-modeled structure was given (Supple-
mentary Fig. 1). As in the ClusPro server, the best-scored pose per rotation is retained, resulting in a
total of up to 70,000 docked poses for further analysis.

Once the PIPER docking poses and energies are obtained for the antibody structure or for each
antibody model i in the ensemble of homology models (which can include one or several models,
depending on the number of suitable templates), the top 1,000 lowest-energy poses are selected, and
for each such pose j, the number lij of antigen surface atoms51 that are in contact with the corre-
sponding antibody is counted. More precisely, any heavy atom on the antigen surface found to be
within the 5-Å threshold from any of the antibody surface heavy atoms is considered to be in contact
with the antibody. For each antigen atom on the interface, we calculate a Boltzmann-weighted
normalized contact ‘occurrence’ as follows:

υatomij ¼ e
� εij�εioð Þ

T

lij

where εij and εio are the jth and the best PIPER energy scores of the ith antibody structure in the
ensemble, and a value of 100 was used for T (‘temperature’) to scale the relative energy scores. After
summing the atomic contributions shown above over j (the docked structures) and averaging over i
(the different antibody models), an epitope likelihood score that indicates how often the atom
participates in the antibody–antigen interface of low-energy models predicted by PIPER is obtained.

Fig. 1 | Outline of the AbEMap protocol using an antigen structure and an antibody sequence as inputs, examples of complex structures generated
by PIPER, four examples of results and comparisons to other servers. a, The user inputs the solved crystal structure of the antigen (shown as PyMOL
stick figures in purple) and the antibody sequence (shown as purple text) (if the structure is unavailable). b, The antibody sequence is used to find
close homologs by using BLAST for each of its heavy (H) and light (L) chains. A sample multiple sequence alignment of close homologs is shown for
the monoclonal murine antibody 1FGN. L1 and H1 (green), L2 and H2 (blue) and L3 and H3 (red) regions of the complementarity-determining regions
are highlighted. The list of homologs is filtered by using sequence identity and sequence similarity of L3 and H3 regions to the query sequence. c, The
structures for the selected sequences are modeled individually by using MODELLER. Aligned regions of the backbone are copied from the template,
whereas non-aligned regions are modeled. d, The residues with the highest likelihood of being in the epitope are highlighted in red on the results page
of the server. e, Billions of antibody–antigen complex conformations are generated by PIPER for the given antibody structure or for each antibody
model. The antibody is shown as a translucent cartoon, and the antigen is shown as a cyan surface. f, The bar plot shows the number of poses in the
top 100 models generated by PIPER that are within different root mean square deviation (RMSD) thresholds. For example, three models (in the top
100) have RMSD ≤2 Å, and 21 models have RMSD between 10 and 12 Å. g, As examples of visualizing the results, modeled murine anti-tissue factor
(PDB ID 1FGN) and tissue factor (PDB ID 1TFH) are shown as surfaces with residues colored from blue to red on the basis of increasing predicted
epitope likelihood score. 19 of the 26 epitope residues are in the 30 top-ranked residues. h, Modeled humanized Fab D3h44 (PDB ID 1JPT) and tissue
factor (PDB ID 1TFH) shown as surfaces with residues colored from purple to gold on the basis of increasing predicted epitope likelihood score. 20 of
the 24 epitope residues are in the 30 top-ranked residues. i, Modeled anti-CCL2 neutralizing antibody (PDB ID 4DN3) and monocyte chemoattractant
protein (1DOL) are shown as surfaces with residues colored from orange to green on the basis of a decreasing predicted epitope likelihood score. All
14 of the 14 epitope residues are in the 30 top-ranked residues. j, Modeled anti-shh chimera Fab fragment (PDB ID 3MXV) and sonic hedgehog
N-terminal domain (PDB ID 3M1N) shown as surfaces with residues colored from yellow to red on the basis of increasing predicted epitope likelihood
score. 15 of the 24 epitope residues are in the 30 top-ranked residues. k, The distribution of the area under the receiver operating characteristic curve
(ROC AUC) scores of 28 unbound antibody–antigen complexes for two of the top epitope-predicting servers (SEPPA and BEpro) are compared to that
of AbEMap. AbEMap outperforms both in terms of the average (red dot), median (middle line) and 25th and 75th quartiles. l, The F1 and MCC scores
of three different methods are compared for model antibodies when only homologs with <80% sequence identity are used as templates. ClusPro
AbEMap takes the ensemble average residue scores from 5 to 10 of the best homologs, and EpiPred is used for epitope prediction with the best model
antibody. AbEMap outperforms EpiPred before and after ensemble averaging of the likelihood scores.
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The total number of considered docked structures and the ‘temperature’ factor were optimally
selected by using the receiver operating characteristic (ROC) AUC score obtained from the likelihood
scores of each residue (area under the ROC curve; this score is described in more detail below in
Performance measures). The top 1,000 lowest-energy poses and a T value of 100 give the best results
(Supplementary Fig. 2). Because PIPER generally increases the number of docked structures around
the native interface, it is expected and observed that atoms predicted to be in the epitope more
frequently by the docked structures are more likely to be in the true epitope. This likelihood score is
shown as the B-factor value in the final PDB file given to the user (Fig. 1d), and it helps to visually
highlight plausible epitope regions. For evaluating epitope prediction accuracy, we convert the atom
likelihoods to residue likelihoods by summing up the atomic contributions for each residue. Although
adding atomic likelihood values implies that bigger residues with more surface-accessible atoms are
scored better, the residue likelihood values are not corrected for size, and hence this bias may have to
be accounted for by the user.

Protein datasets used for testing AbEMap
A set of 40 antibody–antigen complexes found in the widely accepted protein–protein docking
benchmark version 5.0 (BM5)52 from the Weng laboratory was used to test our protocol (Figs. 1–3).
To ensure non-redundancy, the authors selected an antibody–antigen complex only if the antigen was
not in the same Structural Classification of Proteins53 family, and it did not share more than 80% of
the interface residues with another52. The BM5 set contains 12 antibody–antigen complexes with the
antibody crystallized only in complex with the respective antigen but not on its own (termed
‘unbound-bound targets’). For the other 28 complexes, the X-ray structure of the antibody has been
determined both on its own and in complex with the antigen (termed ‘unbound-unbound targets’). In
both cases, the antigen was independently crystallized in addition to its form in a complex with the
respective antibodies. We compared the performance of AbEMap to that of SEPPA, BEpro and
EpiPred by using this set of antibody–antigen complexes. However, EpiPred did not work for one of
the unbound targets (PDB ID 2I25), most likely because it contains a single-chain shark antigen
receptor without any CDR rather than a traditional antibody. Therefore, the target 2I25 was excluded
from figures that compare AbEMap with EpiPred. In addition, we wanted to test the protocol on the
23 antibody–antigen complexes that were recently added to the docking benchmark set (denoted
‘BM5.5’)29. However, AbEMap was unable to provide antibody models for two of the complexes, and
hence our discussion is restricted to the remaining 21 targets.

Performance measures
The prediction performance for each antibody–antigen sequence was evaluated on the basis of the
ground truth obtained from the bound structures of the complexes. The true epitopes are simply the
residues of the antigen that are within 5 Å from the nearest antibody heavy atom in the native
complex54,55. It appears that the most widely used performance measure among epitope-mapping
servers10–12,18 is the ROC AUC, and hence it was also used to compare the performance of ClusPro-
AbEMap with that of other probabilistic servers such as SEPPA and BePro (we recall that an ROC
curve plots the true positive (TP) rate versus the false positive (FP) rate, and ROC AUC is the area
under the ROC curve). We also show the F1 score—the harmonic mean of precision and recall—and
the Matthews correlation coefficient (MCC) score at different residue rank cutoffs as used in other
studies17,30. The TPs, FPs, true negatives and false negatives at the selected cutoff values were
considered for each antibody–antigen target and used to calculate the F1 and MCC scores:

F1 ¼ TP
TPþ 1

2 FPþ FNð Þ
MCC ¼ TP ´ TN � FP ´ FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþ FPð Þ TPþ FNð Þ TN þ FPð Þ TN þ FNð Þ
p

These metrics give a balanced view of recall and precision, which are the essential metrics for
classifiers. Because there is no accepted likelihood cutoff value to decide whether a residue is predicted
to be in the epitope, for comparison, we consider the top 10, 20, 30, 40 and 50 residues and count the
number of true epitope residues among them. Indeed, most epitope lengths fall within that range56,
and the average epitope length for the antibody–antigen targets in BM5 was 21 residues. For all peer
servers, the performance data was obtained by running epitope-mapping jobs for all 40 targets in
BM5. For evaluating homology modeling, we compared the ClusPro-AbEMap’s performance by using
homology models of the antibodies as generated by the server. The epitopes on the corresponding

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 18 | JUNE 2023 | 1814–1840 |www.nature.com/nprot 1819

https://www.rcsb.org/structure/2i25
www.nature.com/nprot


antigens were mapped by the antibody-specific server EpiPred for comparison. Previously used homology
benchmark sets were built with more relaxed sequence identity thresholds30,57,58 (<90% instead of <80%
used for this manuscript) and thus were not included in our study.

Applications of the method
There are three major application modes of AbEMap, depending on the availability of prior infor-
mation on the antibody, which can be provided as (i) an X-ray crystal structure, (ii) a predicted
structural model or (iii) only the amino acid sequence. Inspired by ClusPro-TBM35,59 and to address
a potentially wider community, AbEMap provides the third option to start from antibody sequence
and antigen structure, which is not available with servers providing the other two application modes.
For users with the X-ray structure of the antibody or the resources for antibody structure prediction,
the AbEMap server provides simplified options for modes i and ii that require uploading PDB
structures, and then, on the basis of ClusPro docking results, map the epitope residues on the antigen.
In what follows, we demonstrate the application of the three different modes of AbEMap to some
targets from the widely used protein–protein docking benchmark set BM529,52. The 28 unbound
antibody crystal structures from this benchmark set, as well as their sequences, were used for epitope
mapping entirely through AbEmap (demonstrating modes i and iii). To showcase the application
with independently predicted antibody structures (mode ii), we used AlphaFold2 to model the
antibodies in the set by using the program and parameters currently made public39,40.

Epitope mapping starting from an antibody X-ray structure
This is the simplest option provided by AbeMap. The server was applied to the 28 unbound
antibody–antigen targets in BM5 (Supplementary Table 1). We show F1 and MCC scores when
considering the true epitope residues among the top 10 up to the top 50 residues ranked by using the
predicted epitope likelihood score and averaging the obtained scores over all 28 cases (Fig. 2).
AbEMap obtained an average ROC AUC score of 0.738 (Fig. 1k) and F1 and MCC scores of 0.304
and 0.249, respectively. For the 12 bound antibody–antigen complexes in BM5, for which the anti-
bodies were crystallized in complex with the respective target antigens and only the antigens were
crystallized separately, AbEMap’s ROC AUC score increased to 0.822, whereas the F1 and MCC
scores, 0.297 and 0.249, respectively, did not substantially change. We also compare the performance
by AbEMap to that of the epitope prediction methods SEPPA, EpiPred and BEpro (Fig. 2). The
AbEMap results are better than the ones obtained by these alternative methods.

Epitope mapping starting from modeled antibody structures (provided by the user)
This AbEMap application is meant for users who have access to specialized antibody homology-
modeling software or have their own modeling programs. As noted in our earlier paper26, the ClusPro
server is often used for docking homology models of protein complex components. Antibody-modeling
programs such as Rosetta60, PIGSPro61, LYRA62, Repertoire Builder63, DaReUS-Loop64 and SAbPred’s
ABodyBuilder65 are some of the few widely used antibody-modeling programs that can be used. As
noted by Marks and Deane, apart from the heavy chain’s CDR3 loop (H3 loop), most antibody
homology modeling programs can generate antibody models within 3-Å root mean square deviation
(RMSD) from the native structure66. Therefore, users might choose from one of the available programs
listed above. However, such models tend to have more steric clashes than the X-ray structures and use a
special PIPER coefficient set that reduces the steric penalty to account for this.

The recent introduction of AlphaFold240 has quite justifiably excited the field. Because of the
ability of AlphaFold2 to predict very accurate structures from sequence for most proteins41, we
expected that the method could also be used for modeling antibodies. Therefore, we tested
AlphaFold2-modeled antibodies for mapping epitopes and compared the results to those obtained for
X-ray structures and from antibody sequences by using AbEMap’s built-in homology protocol,
obtaining ROC AUC scores for the 40 antibody–antigen targets in the BM5 set, including the
28 unbound and 12 bound targets (Table 1). AlphaFold2 was used to model antibodies with and
without templates. Adding templates to predict antibody structures did not improve the performance
of epitope prediction for bound antibody–antigen targets but yielded a slight improvement for
unbound targets. Results obtained from antibody sequences by AbEMap (Table 1), to be discussed in
the next section, demonstrate that AlphaFold2 is not necessarily the best method for modeling
antibodies41. Lastly, a correct bound structure of the antibody increases the accuracy of the epitope
prediction notably, as shown in the 11% improvement from the unbound crystal structure and a 6.5%
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improvement from the internally homology-modeled antibodies (Table 1). Thus, input of an antibody
structure closer to the native structure yields better epitope prediction accuracy.

Epitope mapping starting from antibody sequences
This application is an adaptation of the Cluspro-TBM server35,59 introduced for round 13 of the CASP/
CAPRI protein docking experiment67. Users need structural data for the antigen but only sequence data for
the antibody. To account for uncertainties from the templates or inaccurate modeling, AbEMap uses an
ensemble of models as described. Results obtained by using these models are similar to the ones obtained
when using the separately solved X-ray structures of the antibodies (Table 1). Four examples of AbEMap’s
predictions from the table are shown (Fig. 1g–j): modeled murine anti-tissue factor (PDB ID 1FGN) and
human tissue factor (PDB ID 1TFH), modeled humanized Fab D3h44 (PDB ID 1JPT) and human tissue
factor (PDB ID 1TFH), modeled anti-CCL2 neutralizing antibody (PDB ID 4DN3) and monocyte che-
moattractant protein (PDB ID 1DOL), modeled anti-shh chimera Fab fragment (PDB ID 3MXV) and
sonic hedgehog N-terminal domain (PDB ID 3M1N), respectively. AbEMap is able to predict 73.07%,
83.3%, 100% and 62.5%, respectively, of the true residues in the 30 top-ranking residues.

When using antibody models rather than X-ray structures, the placement of the H3 loop is parti-
cularly important for the success of epitope mapping68. An example of how incorrect modeling of this
loop can skew epitope prediction is demonstrated by epitope mapping of the major allergen Birch pollen
Bet V1 with the monoclonal IgG antibody (PDB ID 1FSK) (Fig. 3a). In this example, an ensemble of
eight templates was used to model the antibody. The native antibody pose, shown in purple, has its
heavy chain CDR3 highlighted in cyan. The templates (three of the eight shown in green) are aligned to
the native antibody. The native antigen is represented as a blue surface with the true epitope residues
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Fig. 2 | Epitope-mapping performance of four different servers tested on 28 unbound-unbound antibody–antigen
complexes in the benchmark set BM5. F1 and MCC scores for ClusPro-AbEMap, SEPPA, EpiPred and BEpro at
different cutoff thresholds when the antigen residues are ranked by the obtained scores. The measures are averaged
over the 28 complexes. The AbEMap results are slightly better than the ones obtained by SEPPA and substantially
better than the ones obtained by BEPro and EpiPred.

Table 1 | ROC AUC scores for AbEMap with four types of input for the antibody

ROC AUC scores X-ray structure Internal homology Alphafold2 Alphafold2 with templates

Bound-unbound (12) 0.822 0.772 0.695 0.695

Unbound-unbound (28) 0.738 0.736 0.726 0.732

All (40) 0.763 0.747 0.717 0.721

Results are averaged on the 12 bound-unbound and 28 unbound-unbound antibody–antigen complexes in the benchmark set BM5.
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highlighted in red. The modeling of the antibody’s heavy CDR3 loop forces a clash with the antigen,
which prevents the loop from going past the protruding structure of the Glu-Gly-Asn segment of the
antigen (Fig. 3a). This results in an ROC AUC for 1FSK crystal prediction of 0.918 versus only 0.729 for
homology modeling. Furthermore, whereas AbEMap was able to capture a true epitope residue as the
top-ranked residue when using the crystal structure, using the homology modeling approach, one needs
the top-ranked 20 residues to capture the first three true epitope residues.

It is not always true that using homology modeling of the antibody performs poorly compared to
using the X-ray structure of the separately crystallized antibody. An example of how the ensemble
approach is able to compensate for the uncertainty of the antibody structure is shown in the results
for the antibody–antigen complex 3EOA (Fig. 3b). Homology-based models of the Fab fragment of
Efalizumab (PDB ID 3EO9) and the crystal structure of lymphocyte function-associated antigen 1
(PDB ID 3F74) are shown. The antigen is shown as a blue surface with the true epitope residues
colored in red. For each docking result from the five selected templates, the centers of mass of all the
docking cluster centers are shown as gray pseudo-atoms around the antigen. The top cluster
representatives of each of the five templates are shown in cartoon representation. Four of the five top
conformations place the antibody almost entirely over the epitope, which improved the ranking of
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Fig. 3 | Examples of AbEMap’s applications. a, The complex of birch pollen Bet V1 (blue surface) with the bound
monoclonal antibody (magenta), PDB ID 1FSK. The true epitope residues are highlighted in red, and three of the
homology models of the antibody are shown in green. The CDR3 of the heavy chain on the native antibody is
highlighted in cyan. b, The integrin alpha-L 1 domain (blue surface) with true epitope residues (red) is shown with
the different poses of the Efalizumab FAB fragment predicted by PIPER. The cluster centers of the top antibody
clusters are shown as gray pseudo-atoms. The top cluster’s representative is shown as a cartoon (green). c, VEGF
protein (blue surface) with the true epitope residues (red) is shown with the different poses of the FAB fragment of a
neutralizing antibody predicted by PIPER. Similar to b, the top cluster centers are shown as gray pseudo-atoms, and
the top-ranked cluster representative is shown as a cartoon. d, ROC plots of AbEMap’s performance with X-ray and
model structures of the antibodies as inputs for the 28 unbound antibody–antigen complexes in the BM5 set. As
shown, the use of homology models provides essentially the same accuracy as using the separately solved X-ray
structures of antibodies. Hmlg, homology modeling.
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epitope residues. The ROC AUC score went from 0.566 for the X-ray structure input of the unbound
antibody to 0.71 when using homology modeling, an increase of nearly 27%.

An interesting case is when homology modeling improves upon the results even from the ones using
the bound Fab fragment (Fig. 3c). The target complex 1BJ1 is a neutralizing antibody crystallized with
vascular endothelial growth factor. The BLAST search followed by the selection filtering described earlier
produced only a single template for docking. The top cluster representative of the docking result is shown
in the cartoon, while the rest of the cluster centers are shown as gray pseudo-atoms. The top con-
formation overlaps with the true epitope shown as a red surface, and some of the cluster centers are also
in that vicinity capturing different parts of the epitope. With an ROC AUC score of 0.736 for the
28 unbound antibody–antigen complexes, the accuracy of the epitope mapping is not that far behind the
results obtained for unbound X-ray structures (Fig. 3d). The results in Table 1 and Supplementary Table 1
suggest that the use of homology models provides very similar accuracy to that of using separately solved
antibody structures, indicating that due to the flexibility of CDRs, information on the unbound structure
of the antibody does not provide substantial advantage over antibody models.

Comparison with existing methods
SEPPA 3.0 and BEpro were chosen for comparison because they were shown to be the best two epitope-
mapping servers in the recent publication by Zhou and colleagues12. Note that these two servers
are antibody agnostic, meaning they accept antigen structure only as the input. ClusPro-AbEMap
outperforms the other probabilistic servers using the well-accepted ROC AUC measure for the 28
unbound-unbound cases in BM5 (Fig. 1k and Fig. 2). The ROC AUC scores were 0.738, 0.703, and 0.655
for ClusPro-AbEMap, SEPPA3.0 and BEpro, respectively. The added structural information on the
antibody provides AbEMap with valuable information on the antibody–antigen interface that gives a
4.9% improvement over SEPPA 3.0 and a 12.7% improvement over BEpro despite not being reinforced
with machine learning components like the other two servers. Another server that was chosen for
comparison was Epipred, which is not antibody agnostic and outputs a deterministic prediction of three
localized epitope patches. The performances of the above three servers and that of EpiPred were
compared by using F1 and MCC scores for 27 of the unbound complexes from BM5 (as mentioned,
EpiPred did not work for PDB ID 2I25). When taking the 20 top-ranked residues from each server,
AbEMap improves the F1 scores by 10% and 60% compared to SEPPA and BEpro, respectively, and
more than doubles that of EpiPred (Fig. 2). In terms of the MCC, AbEMap’s improvement upon SEPPA
and BEpro is 14% and 97%, respectively, while a nearly threefold improvement (2.7 times) on EpiPred is
observed. For 23 of the 27 cases analyzed, AbEMap was able to predict at least one true epitope residue in
its top 20 ranked residues. Both SEPPA and BEpro were able to get at least one epitope residue accurately
in the top 20 for 24 of the 27 cases, whereas EpiPred failed to produce any true positives in the top 20 for
13 of the 27. It should be noted that EpiPred predicts three possible non-overlapping epitope patches on
the antigen and does not give a likelihood or probability score for residues. Therefore, we gave the same
high scores to all the residues in the top-ranked epitope followed by the next high score to the second-
ranked epitope residues and so on. The numbers of true positives in the top 20 ranked residues were
compared for AbEMap, SEPPA, BEpro and EpiPred for each of the 40 cases in BM5 (with no EpiPred
results for 2I25) (Supplementary Table 2).

To assess how ClusPro-AbEMap compares to peer servers that are also antibody specific when using
internal homology modeling by the server, the 28 unbound-unbound cases from BM5 were modeled
from templates with no more than 80% global sequence identity. Recent papers on epitope prediction
used templates up to 90% global sequence identity69, which is too close in our view. We compared
AbEMap with itself when taking only a single template and EpiPred using the same template (Fig. 1l).
The template for modeling with MODELLER was chosen as the best homolog with the highest
CDR3 sequence identity. The resulting models were entered into AbEMap and EpiPred for comparison.
When taking the top-ranking 20 residues, AbEMap with just one template improves the F1 score by
75%. When AbEMap uses the union of the five best-ranking models by CDR3 sequence identity and the
five best-ranking models by CDR3 sequence similarity as templates, the average F1 and MCC scores are
more than double that obtained by EpiPred. The best F1 score of 0.306 was obtained when considering
the top 30 residues predicted by AbEMap based on the top five templates.

The Weng laboratory recently updated the docking benchmark set with a new set of antibody–antigen
complexes that are not found in BM5, resulting in an extended benchmark set, BM5.529. The perfor-
mance of AbEMap was tested on 21 new rigid body cases from the BM5.5 set and compared with that of
EpiPred. We revealed the F1 and MCC scores of AbEMap with the unbound structures as input, with the
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sequences as input and EpiPred’s result with the unbound structures (Fig. 4). Interestingly, AbEMap
performs slightly better with the template-based approach than with the unbound crystals, 0.204 versus
0.196 when considering the top-ranked 30 residues. Using the unbound antibody structures, AbEMap
identified at least one true epitope residue among the 30 top-ranked residues for 20 of the 21 targets,
while it predicted more than 10 true epitope residues for only one of the 21 targets. The homology-
modeling approach, on the other hand, predicted at least one true epitope residue only for 15 of the 21
targets, but more than 10 true epitope residues for 5 of the 21 targets. This further emphasizes that, at
least for the targets in BM5.5, the homology-modeling approach helps to enhance prediction accuracy
when good homologs are found. When considering the top 40 and top 50 residues, however, using the
unbound X-ray structure of the antibody performs slightly better than the template-based approach in
terms of F1 and MCC scores. Using either antibody structures or homology models, AbEMap outper-
forms EpiPred in all ranking cutoffs studied. At the top 30 cutoff, AbEMap unbound and AbEMap
homology modeling perform ~72% and ~78% better than EpiPred using the crystal structures.

Limitations
The major limitations of ClusPro-AbEMap are as follows:
1 Candidate homologs should be homologs for both heavy and light chains, because in some cases

the heavy chain’s homologs and those of the light chain do not match. If they do not match, even if
the homologs are highly similar to one or both of the individual chains, the server does not have the
capability to find a suitable relative orientation of the two chains. Thus, these potentially helpful
homologs are not used for template-based modeling.

2 Rigid-body docking of the antibody and antigen structures may limit the accuracy of results. It is
known that the CDR3 of the heavy chain is one of the most flexible loops of the antibody. Because
the underlying docking program, PIPER, uses a rigid-body docking approach, the conformational
change upon complex formation is not taken into account. Regular docking using ClusPro includes
local minimization of the energy of the docked structures, which removes the clashes and may
introduce some induced conformational changes. Because it retains and analyzes a much larger set
of models, AbEMap does not perform any local energy minimization. However, the negative effects
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Fig. 4 | Comparing AbEMap’s performance on X-ray and homology-modeled antibodies as inputs for 21 new
antibody–antigen targets in the benchmark set BM5.5 with EpiPred’s predictions based on X-ray structure inputs
alone. The prediction metrics are averaged to obtain the F1 and MCC scores shown. Interestingly, AbEMap performs
slightly better with the template-based approach than with the unbound crystals when considering the top-ranked
10, 20 or 30 residues. This emphasizes that the homology-modeling approach may enhance prediction accuracy
when good homologs are found. However, when considering the top 40 and top 50 residues, using the unbound
X-ray structure of the antibody performs slightly better than the template-based approach. Cryst, crystal.
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of this limitation are tempered by the aforementioned coefficient set, which removes the stringent
vdW terms during docking.

3 AbEMap does not include any systematic clustering of the predicted epitope residues to identify a
localized epitope patch, unlike some peer servers. This can be a disadvantage because some residues with
high likelihood scores might be irrelevant if they are dispersed in an isolated manner, whereas clustering
of such residues can signal TPs. Observing such clusters can help the user make better selection of true
epitope residues. However, we were unable to obtain consistent improvement of the results in the
general case, and hence our protocol does not include clustering of the predicted epitope residues.

Materials

Equipment
● A computer with internet access and a web browser
● Atomic resolution structure of the antigen target. The PDB ID can be used to directly fetch the
structure, or the structure can be uploaded from the computer.

● Atomic resolution structure or sequence of the antibody. In the case of structural information, the PDB
ID can be used to directly fetch the structure, or the structure can be uploaded from the computer.

● Access to PyMOL or similar structure-viewing software is recommended but not required. PyMOL can
be downloaded from www.pymol.org. Alternatively, you can use any molecular viewer that supports
the visualization of multiple structures in one PDB file.

Procedure

Entering the basic inputs ● Timing ~1–2 min

c CRITICAL The status updates for AbEMap runs are described in Box 1.

c CRITICAL A list of potential error messages that may be encountered and the reasons they are
generated are given in Box 2.
1 Access the server located at https://abemap.cluspro.org/, where you will be prompted to sign in and

create an account or use the server anonymously.
2 Sign in if an account has already been created, or register to create a new account. Once the

registration is complete, a password will be sent to the email supplied. The password can be
changed by clicking on the ‘Preferences’ option. To use the server without the benefits of an
account, click on the option ‘Use the server without the benefits of your own account’.

c CRITICAL STEP An annotated screenshot of the AbEMap initial job submit page is provided in Fig. 5.

c CRITICAL STEP New users need an educational or governmental email address to create an account.

c CRITICAL STEP All jobs submitted without an account are publicly accessible.
3 Select the ‘Epitope Mapping’ option to use the AbEMap functionality.
4 (Optional) Enter a job name for the submission.

c CRITICAL STEP If this option is left blank, a unique name will be provided by the server.
5 Input the antigen structure in PDB format. The docking procedure will remove all HETATM atoms

from the PDB input, including water molecules, cofactors and ligands. Only the 20 standard amino
acids and nucleotides will be retained.

Box 1 | Status updates for AbEMap runs

Processing pdb files. Downloading the PDB file from https://www.rcsb.org, processing files and selecting chains specified by the user.
Pre-docking minimization. Running CHARMM to add missing atoms and hydrogen, minimizing added atoms and if running a homology mode,
creating homology models.
Copying to supercomputer. Copying the working files to the computer cluster.
Held on supercomputer. The working files have been copied to the computer cluster, but the job has not started yet.
In queue on supercomputer. The job has been submitted and is in the queue.
Running on supercomputer. The job is running.
Calculating epitope residues. Calculating the epitope residue scores.
Finalizing job. Preparing the working files to be transferred back to the local computer.
Copying to local computer. Copying the working files to the local computer.
Finished. The job is complete.
Error on local system. Error processing PDB files; check error messages.
Error on supercomputer. Error running the job; check error messages.
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6 Enter the structure. This can be done either by using a PDB ID or by uploading a PDB format file.
If you import the antigen structure by using PDB ID, the four-character ID is used to automatically
download the coordinates from https://www.rcsb.org. To upload the antigen structure by using a
PDB format file, click on ‘browse’ and select the file to be uploaded.

c CRITICAL STEP If there are multiple structures in the given PDB file, then our procedure will
consider only the first structure.

c CRITICAL STEP Nonstandard amino acid residues present in the PDB file are not supported and
will result in an error when submitting.
? TROUBLESHOOTING

7 In the ‘chains’ field, enter the chains on the antigen to be used for epitope mapping. The chain IDs
should be separated by white space.

c CRITICAL STEP If no chains are specified in this field, all the chains will be used.
? TROUBLESHOOTING

8 Enter the antibody input type by using either of the available formats: as a sequence in FASTA
format or as a structure in PDB format. The choice of the input format will determine which
submission options will be visible and active for users on the webpage. As a result, the following
steps for submission are broken into a sequence-based (FASTA format) procedure (A) and a
structure-based (PDB format) procedure (B). Once the format type is selected, the user will follow
the corresponding steps for that procedure.
(A) FASTA format sequence-based procedure

(i) Select the FASTA input type.
(ii) Once the decision to use the FASTA format is made, there are two options for entering the

sequence, as follows:
○ Enter the antibody sequence in FASTA format into the provided text box. An example is
provided in the box.

○ Upload the antibody sequence as a FASTA file by using the upload FASTA option.

c CRITICAL STEP The sequence in FASTA format should include the chain IDs.
(iii) Enter a MODELLER key into the provided box. A MODELLER key (a passcode that

allows users to continue with modeling the antibody) can be obtained from https://salilab.
org/modeller/registration.html.

c CRITICAL STEP A MODELLER key is a passcode obtained by users after registering on
the above website. It allows users to use MODELLER, which is a crucial tool used in the
antibody-modeling step. The key is not specific to the antibody but rather to the user.

c CRITICAL STEP No sequence-based epitope prediction can be performed if the user
does not have a MODELLER key.

Box 2 | Error messages and their meanings

XXXX not found in PDB. The pdb XXXX is downloaded from https://www.rcsb.org/. This process will fail if the PDB file is not present on the site or,
occasionally, if the site is down.
Unknown residue XXX in antigen. Please remove. XXX is the three-letter code for a residue in the antigen. If ClusPro does not recognize the residue,
it will fail to dock. Please replace with a standard residue.
Unknown residue XXX in antibody. Please remove. XXX is the three-letter code for a residue in the antibody. If ClusPro does not recognize the
residue, it will fail to dock. Please replace with a standard residue.
Antigen chains must be fewer than 20 characters. Chain specification is incorrect.
Antigen chains must be white space separated alphanumeric characters. Incorrect or missing antigen chain specification.
Antigen PDB ID must be 4 alphanumeric characters. Invalid PDB code.
Antigen file too large. The PDB file exceeds the maximum allowed size.
Antigen file only partially uploaded. Network error during upload, or the PDB file is too large.
Antibody chains must be fewer than 20 characters. Chain specification is incorrect.
Antibody chains must be white space separated alphanumeric characters. Incorrect or missing antibody chain specification.
Antibody PDB ID must be 4 alphanumeric characters. Invalid PDB code.
Antibody file too large. The PDB file exceeds the maximum allowed size.
Antibody file only partially uploaded. Network error during upload or the PDB file is too large.
Copy of antigen failed. The file did not transfer to the computer cluster.
Copy of antibody failed. The file did not transfer to the computer cluster.
Processing failed on antigen. Error processing the antigen file. This issue usually occurs in the minimization process if steric clashes or nonphysical
bonds cause this process to fail.
Processing failed on antibody. Error processing the antibody file. This issue usually occurs in the minimization process if steric clashes or nonphysical
bonds cause this process to fail.
Job ran out of memory on server. The antigen and or antibody are too large.
Repulsion must be in whitespace separated chain-residue format. Incorrect format for the Repulsion list.
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(iv) Select either of the two following advanced options available when using FASTA format as
the input:
○ Define an exclusion list. If there are structures that should not be used by MODELLER as
templates for the construction of the antibody structure, they should be listed. The
models should be listed by PDB IDs separated by whitespace. This is beneficial for
testing the server and/or comparing predictions based on different homolog availability.

○ Automatically mask non-CDRs. If selected, the server masks regions on the antibody
that are not part of the CDRs. All areas of the antibody are considered if this option is
not selected. This reduces the areas under consideration for docking and increases
accuracy while reducing computational time.

c CRITICAL STEP Selecting either advanced option is optional.

c CRITICAL STEP By default, the masking option is already selected for users because it
was found to yield the best results.

(B) PDB format structure-based procedure
(i) Select the PDB input type (as shown in Fig. 6). This option takes in the antibody structure

in PDB format. The docking procedure will remove all HETATM atoms from the PDB
input, including water, cofactors and ligands; only the 20 standard amino acids and
nucleotides will be retained. If there are multiple models in the given PDB, the docking
procedure will consider only the first.

(ii) The structure can be entered in either of the two following ways:
○ Import the structure by using the corresponding four-character PDB ID that AbEMap
uses to download the coordinates directly from https://www.rcsb.org.

○ Upload the PDB by clicking on ‘browse’ and selecting the PDB file to be uploaded.

c CRITICAL STEP If there are multiple structures in the given PDB file, then our
procedure will consider only the first structure.

Job Name:

Accepted PDB Input:
20 standard amino acids

Antigen

PDB ID: Antibody
Sequence:

Whitespace separate desired chains. Leave chains blank to use all chains.

Whitespace separate PDB IDs to exclude from the templates considered for homology
modeling.

Automatically Mask non-CDRs

I agree to use ClusPro only for
noncommercial purposes.

Antibody

d
Chains:

MODELLER
key:

Exclusion
List:

Advanced Options

e

f

g

h

b

c
Upload PDB

Use PDB Upload Fasta

a

Fig. 5 | AbeMap initial job submit page. a, The space to enter the job name. b, The four-character code that specifies
the PDB is entered here. c, The chains to be investigated go here. d, The FASTA code for the antibody is entered in
this textbox. e, The user’s MODELLER key is entered here. f, The PDB IDs to be excluded in forming the homology
model go here. g, Click here to select/deselect masking non-CDR regions. h, Submit the job by clicking ‘Map’.
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c CRITICAL STEP Nonstandard amino acid residues (labeled as ‘ATOM’ in the PDB file)
are not supported and will result in an error when submitting. Entering the PDB ID does
not cause an error.

? TROUBLESHOOTING
9 In the ‘chains’ field, enter the chains on the antibody to be used for epitope mapping. The chain IDs

should be separated by white space. If no chains are specified in this field, all the chains will be used.
? TROUBLESHOOTING

10 Select if the antibody structure is a homology model. If the custom structure provided is a
homology-modeled antibody, then select the option ‘My antibody structure is a modeled structure’.

c CRITICAL STEP AbEMap provides a different set of weights and energy functions for model
structures.

11 When using the PDB input options, two optional advanced options are currently present to select:
to automatically mask non-CDRs (A) and to define repulsion (B).
(A) Automatically mask non-CDRs

(i) Select ‘automatically mask non-CDRs’ to have the server mask regions on the antibody that
are not part of the CDRs. All areas of the antibody are considered if this option is not selected.

c CRITICAL STEP By default, the masking option is already selected for users because it was
found46 to yield the best results.

Antibody Based Epitope Mapping (AbEMap)

To view ClusPro-AbEMap tutorial page click here

Note: all jobs by non logged in users will be publicly assessible. Please create
an account if data is embargoed and needs to remain confidential

Accepted PDB Input:
20 standard amino acids

AntibodyAntigen

aPDB ID:

Whitespace separate desired chains. Leave chains blank to use all chains.

My antibody structure is a modelled structure

Advanced Options

c

d

Automatically Mask non-CDRs

Repulsion:

Use PDB Masking File

I agree to use ClusPro only for
noncommercial purposes.

b

Chains:

PDB ID:

Chains:

Upload PDBUpload PDB Use FASTA Seq

Job Name:

Fig. 6 | AbeMap job submit page after selecting the ‘Use PDB’ option for the antibody. a, The four-character code
that specifies the antibody PDB is entered here. b, If the structure is homology-based, select this checkbox. c, The
option to automatically mask non-CDR regions is toggled here. d, The residues for repulsion are entered here.
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(B) Define repulsion
(i) As an alternative to automatic masking, you may want to manually provide information

about what antibody residues are not in the binding interface. To bias the docking against
those residues being in the binding interface, you can add a repulsion term to the residues
you select. This can be achieved by providing a list of residues or a masking file and can be
done in either of the following two ways:
○ Enter a list of residues in the ‘Repulsion’ text box. The residues should be separated by
white space and have the form chain-residue number (e.g., a-27).

○ Generate a masking file by opening up the PDB file in PyMOL and using the sequence
option to select the residues that should be excluded. Save this selection to a masking file
in PDB format and upload.

? TROUBLESHOOTING

Submitting the job and obtaining the results ● Timing ~45–90 min
12 Once all the desired options have been selected, submit the job by using the ‘map’ button. Monitor

the job status by using the ‘Queue’ page (Fig. 7; see Box 1 to interpret the status updates).

104: 1VFB

user input

processed files

Advanced Options

Download Receptor Mask

Ran Epitope Mapping with Ab crystal structure

Receptor Repulsion generated

rec lig

rec lig

chains:
(all)

chains:
(all)

Status
Submitted 2022-11-08 00:15:33

Errors (none reported)
Rotations 70,000

finished (View Models)

Fig. 7 | AbEMap status page. The page shows the job number in the AbeMap queue, the job ID, the status of the job,
the submission date and time, potential errors and the number of rotations used during the docking stage. Further
details on the job can be viewed by clicking the job number. Next, the page shows the input structures read by the
program as cartoons and the structures after pre-processing. Finally, the advanced options selected by the user are
shown at the bottom of the page.

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 18 | JUNE 2023 | 1814–1840 |www.nature.com/nprot 1829

www.nature.com/nprot


c CRITICAL STEP If the job has been submitted by using an account, an email will be sent on
completion to notify the user that the job is done (Fig. 8).
? TROUBLESHOOTING

13 Obtain the results for the job under the ‘Results’ tab.

c CRITICAL STEP The results will remain on the server for ≥2 months, but after this time, they may
be removed.

Analyzing the results ● Timing ~30–40 min
14 View the results by selecting the ‘Results’ tab and selecting the job ID number. The results will differ

depending on the input selection, FASTA (A) or PDB (B) format.

c CRITICAL AbEMap produces several types of results files depending on the input format selected
by the user. These files come in three formats: PDB, PSE and Residue Scoring files. Downloading
and viewing the results are described in Box 3. The significance of these files and the means to
access the information is provided in Box 4 (see also Table 2). Our AbEMap jobs result page is
shown in Figs. 8 and 9.

Job Details: 1VFB

View Model Scores

Download all Models for all Coefficients
Advanced

No VdW | Reduced attractive VdW | Antibody Mode

If you use these models in a paper, please cite our papers

Average d

e

a

b

c

Fig. 8 | AbeMap job results page. a, To view the results scores for the selected model, click here (Fig. 9). We recall
that when using the homology-modeling option, AbeMap generates multiple models, one for each template. b, To
view all the models for the job, select the ‘Advanced’ option. c, To view models obtained by using different coefficient
sets, select the coefficients one wishes to view (No VdW; set 003; Reduced attractive VdW; set 005; Antibody
Mode; set 007). d, To download the average PDB file with the likelihood scores in place of thermal factors, click here.
e, The figure shows the PyMol-generated structure of the antigen in surface view. Blue to red shows increasing
predicted likelihood scores.
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Box 3 | Results for the different types of inputs

(A) FASTA input
This job is run by using three sets of coefficients as follows: (i) No VdW (neither van der Waals repulsion nor van der Waals attraction,
(ii) Reduced Attraction VdW and (iii) the parameters of the Antibody Mode of ClusPro. By default, the results page displays the average model
for the No VdW score. Access the average score for the other coefficients by selecting the specific option. To download the average model,
select the ‘Average’ label.
Advanced mode allows the user to view all the models generated for the corresponding coefficients. Click on the ‘Download All Models’
option to download all models.
Download individual models by selecting the model number label. The downloaded models are in the PDB format.
View the model scores by selecting the ‘View Model Scores’ option. The scores are shown for the average model and the No VdW
coefficient. To view the Reduced Attraction VdW or Antibody Mode, select those options.
Select the advanced option and then select the model to view individual model scores. The scores represent the likelihood of the residue
being in the epitope.
Download the scores in the .csv format by selecting the ‘Download Residue Scores for this Coefficient’ option.

(B) PDB format input
The result page for this option has the atom-based average model displayed. Download it by selecting the ‘Average’ option.
View the scores for this model by selecting the ‘View Model Scores’ option. The scores represent the likelihood that the residue will be present
in the epitope.
Download these scores by selecting the ‘Download Residue Scores for this Coefficient’ option; they will be downloaded in the .csv format.

Box 4 | Detailed description of result files

PDB files
PDB files provide structural information for all atoms in the model; each line provides descriptors to specify the atom and the coordinates for the
atom. The files can be accessed as text files or viewed by using molecular visualization software such as PyMOL. The models are named in this
format: model.001.002.pdb. The first number (001 in this case) in the name specifies the coefficient set used to create the model. The second
number (here, 002) specifies the model number for that coefficient set corresponding to the rank of the model determined by PIPER, with the
highest-ranked model denoted by ‘001’. For homology modeling using multiple templates, models are given for each template used and an
additional model, which includes the average likelihood scores shown in place of temperature factors (i.e., in columns 61–66 of ATOM records). If
X-ray structure is used as the input, two model files are still generated (model.000.001.pdb and model.000.002.pdb), but the two PDB files are
the same, with the difference being that the second file includes the average likelihood scores. When modeled antibodies or homology modeling is
used, the above output is repeated for each coefficient set (see below).
For modeled antibody inputs from the user or sequence inputs, results generated by using 11 different coefficient sets (denoted as ‘000’ to ‘010’)
can be downloaded. Table 2 shows the coefficient values for the five energy terms included in PIPER energy, and the minimum attractive van der
Waals energy term allowed (Min. Eatt), which is used to ensure that the two proteins contact each other. The general form of the energy function
for the coefficient set 000 is given by

E000 ¼ 0Erep � 0:2Eatt þ 300ECoul þ 30EBorn þ 0:2EDARS
and all coefficients are shown in Table 2.
PSE files
PSE files are PyMOL-specific molecular visualization files. The average structures created by AbEMap are provided in this file type. The average
files are named in the following manner: average_coef000_session.pse. The 000 specifies the coefficient set used to create the average structure.
Residue Scoring File
The Residue Scoring File is in the comma-separated values (.csv) format. The scores are listed in four columns: Chain, Residue, Resn and Score.
‘Chain’ denotes the chain the residue is in, ‘Residue’ denotes the residue number, ‘Resn’ denotes the residue three-letter code and ‘Score’ denotes
the likelihood of the residue being in the epitope.

Table 2 | Energy function coefficient sets

Energy function coefficients

Coefficient set Erep Eatt ECoul EBorn EDARS Min. Eatt

000 0.0 −0.2 300 30 0.2 10

001 0.1 −0.2 300 30 0.2 100

002 0.3 −0.2 300 30 0.2 100

003 0.5 −0.2 300 30 0.2 100

004 0.5 −0.1 300 30 0.2 10

005 0.5 −0.1 300 30 0.2 100

006 0.5 0.0 300 30 0.2 100

007 0.0 0.0 300 30 0.2 100

008 0.0 0.0 300 30 0.2 10

009 0.5 0.0 300 30 0.2 10

010 0.0 −0.2 300 30 0.2 10

Coefficient sets 003, 005 and 007, shown in boldface, represent the default options recommended for use with antibody models (see Anticipated results).

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 18 | JUNE 2023 | 1814–1840 |www.nature.com/nprot 1831

www.nature.com/nprot


Job Details: 1VFB

View Models

No VdW | Reduced Att. VdW | Antibody Mode

Download Residue Scores for this Coefficient

Advanced

See Kozakov et. al. in Papers for a description of these terms

We strongly encourage you to read the FAQ related to these scores before using them.

Residue likelihood Scores
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27

LYS
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PHE
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ALA

LYS

ARG

HIS

GLY

ASP

ASN

TYR

ARG

GLY

TYR

SER

LEU

GLY

ASN

10.2681968

10.1338096

6.2574554

4.0437034

17.7194371

7.3392096

10.3724585

1.8633536

0.7671198

3.0662693

6.8890756

3.0130699

1.2181714

2.6766246

3.3631388

1.4482046

3.634052

2.3422414

3.6755521

3.2998299

0.7883559

0.8160496

1.6652578

resi resn score
c

E = 0.00Erep + 0.00Eatt + 600Eelec + 0.20EDARS

Coefficient Weights

a

b

Fig. 9 | AbeMap job results scores page. a, To view scores for different coefficient sets, select the coefficients to be
viewed here. b, To download the scores for the selected coefficient, click here. c, The likelihood scores for each
amino acid residue in the model are presented here. We recall that for epitope prediction, AbeMap uses 1,000
structures to calculate the frequency of each antigen surface atom’s occurrence in the antibody–antigen interface
and defines the atomic epitope likelihood score as the Boltzmann weighted atomic interface occurrence frequency
averaged over the ensemble of antibody structures. The residue likelihood scores are obtained by summing the
atomic contributions for each residue.
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Troubleshooting

Troubleshooting advice can be found in Table 3.

Timing

Steps 1–11, entering the basis inputs: ~1–2 min
Steps 12 and 13, submitting the job and obtaining the results: ~45–90 min
Step 14, analyzing the results: ~30–40 min

Anticipated results

Mapping hen egg white lysozyme epitopes binding two different antibodies
We mapped epitope residues of hen egg white (HEW) lysozyme with two different antigen
receptors: shark single-domain antigen receptor 2I24 in the complex 2I25 and the D1.3 anti-HEW
antibody fragment 1VFA in the complex 1VFB (see Supplementary Table 1). First, we consider that
the antibodies are given by their X-ray structures. For the complex 2I25, the average mapping
results of the HEW lysozyme (PDB ID 3LZT) in surface format (blue to red showing increasing
likelihood score by AbEMap) are compared in Fig. 10a with the true orientation of the antigen
receptor (PDB ID 2I24), shown as an orange cartoon. For comparison, the true placement and

Table 3 | Troubleshooting table

Step Problem Possible reason Solution

6, 8B(ii) XXXX not found in the PDB The PDB XXXX is downloaded from
https://www.rcsb.org. This process
will fail if the PDB file is not present
on the site, the PDB ID is incorrectly
entered or if the site is down

Verify that the PDB IDs are accessible
(and not obsolete) on https://www.
rcsb.org/

The [antigen/antibody] PDB ID
must be four alphanumeric
characters

Invalid PDB ID that has greater or
less than four alphanumeric
characters

Please make sure to enter valid PDB
IDs for both the antibody and antigen
accordingly

Unknown residue XXX in
[antigen/antibody]. Please remove

XXX is the three-letter code for a
non-conventional or modified
residue in the antigen/antibody. If
ClusPro does not recognize the
residue, it will fail to dock

Please replace with a standard residue

The copy of [antigen/antibody]
failed

The input files were not copied to
the computer cluster for some
reason

Check the input files

The [antigen/antibody] file is too
large

The PDB or FASTA file uploaded is
too big because of the file type, or
the number of atoms is too big

Use a smaller domain of the antigen
and/or the FAB region of the antibody
that is most likely to be in the interface
as the input

The [antigen/antibody] file only
partially uploaded

There might have been an error
during upload, or the file might be
too big

Consider smaller regions of the input
proteins

7, 9 The [antigen/antibody] chains
must be fewer than 20 characters

Chain specification is incorrect, or
you have submitted >20 chain IDs

Please make sure to use <20 chains

The [antigen/antibody] chains
must be white space–separated
alphanumeric characters

Chain inputs are not separated by
white space

Make sure to separate chain IDs by
white space

11B(i) Repulsion must be in white
space–separated chain-residue
format

Incorrect format for the repulsion
list

Make sure that the repulsion list is in
white space–separated chain-residue
format

12 Processing failed on [antigen/
antibody]

Error processing the antigen/
antibody file. This issue usually
occurs in the minimization process
if steric clashes or nonphysical
bonds cause this process to fail

Take a closer look at the input
structures and remove clashes; then,
resubmit the edited structures

The job ran out of memory on the
server

The antigen and/or antibody are
too large

The best route is to consider smaller
domains of the antigen protein and/or
just the FAB fragment of the antibody

Not enough lines in the output file This error occurs when our
computer cluster experiences a lag
and does not respond to the
server’s request for an update

We recommend reaching out to our
team via https://abemap.cluspro.org/
contact.php so that we can push along
your job to avoid resubmission
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orientation of the D1.3 antibody (PDB ID 1FVA) in the other complex, 1VFB, on the same HEW
antigen are shown as a semi-transparent green cartoon. To show the results for the 1VFB complex,
the average mapping results of the HEW lysozyme (PDB ID 8LYZ) in surface format (blue to red
showing increasing likelihood score by AbEMap) were obtained, with the green cartoon repre-
senting the D1.3 antibody (PDB ID 1FVA) and the antigen receptor (PDB ID 2I24) shown as a
semi-transparent orange cartoon (Fig. 10b). In the top 20 predicted residues, using the coefficient
set 007 (the no vdW option), AbEMap finds 10 of the true 22 residues for 3LZT and 11 of the true
19 epitope residues for 8LYZ (Supplementary Table 1).

We used the same two antigen receptor complex examples (2I25 and 1VFB) with the HEW
lysozyme as the antigen to demonstrate the modeled antibody structure mode of epitope mapping
with AbEMap. The results of epitope mapping using the AlphaFold2-generated models of antibodies
1VFA and 2I24, respectively, were obtained, and the antigen is viewed from the same angle as with
using X-ray structures as the input above, for easy comparison (Fig. 10c,d). In the top 20 predicted
residues, mapping with AlphaFold2 models finds 11 of the true 22 residues on 3LZT and 7 of the 19
true epitope residues on 8LYZ, which is slightly less for 8LYZ but actually slightly more for 3LZT
than the number found based on the X-ray structures of the antibodies using coefficient set 007 (the
no vdW option). For coefficient set 003 (the reduced attractive VdW option), the results change to 8
of the 22 and 10 of the 19, respectively, thus better compared to using X-ray structures of 8LYZ but
worse compared to using X-ray structures for 3LZT. The results when we have only the sequence of
the antibody to start with, submitting the FASTA sequences of 1VFA and 2I24 (while excluding the
crystal structures of the antibodies and their complexes 1VFB and 2I25, respectively, from the
possible homologs for modeling the antibodies) are shown in Fig. 10e,f. We note that for 1VFA,
AbEMap found 7 templates that pass the criteria described earlier (i.e., sequence identity above 20%
and e-value below 1 × 10−40). Thus, eight different models—one for each template and one for the
average model—were generated for each coefficient set. Nevertheless, in these cases, the homology
models were not accurate enough for AbEMap to perform well, and only two and five true epitope
residues, respectively, are captured in the top 20 predicted residues for 2I25 and 1VFB.

Examples of successful mapping using homology models of antibodies
As shown above, starting from the sequences of 1VFA and 2I24 and using the internal homology-
modeling tool, AbEMap identified only a few epitope residues. However, the poor performance is an
exception rather than the rule, and in most cases the accuracy of epitope prediction based on
homology modeling is almost the same as that based on a separately crystallized X-ray structure of
the antibody (Supplementary Table 1). Here, we show results for two complexes. 2W9E includes the
structure of ICSM 18, the Fab fragment of a therapeutic antibody complexed with the fragment
119–231 of a human prion protein70. X-ray structures are available both for the antigen (PDB ID
1QM1) and the separately solved antibody (PDB ID 2W9D); see Supplementary Table 1. The second
complex, 3MXW, includes the crystal structure of sonic hedgehog bound to the 5E1 fab fragment71.
In this case, we also have the X-ray structures both for the antigen (3M1N) and the separately solved
antibody (3MXV).

For the complex 2W9E, the average mapping results of the human prion protein (PDB ID 1QM1)
in surface format (blue to red showing increasing likelihood score by AbEMap) are compared in
Fig. 11a, with the true orientation of the antibody (PDB ID 2W9D) shown as an orange cartoon.
Average mapping results of the sonic hedgehog (PDB ID 3M1N) in surface format (again, blue to red
showing increasing likelihood score by AbEMap) were obtained, with the orange cartoon repre-
senting the antibody (PDB ID 3MXV) (Fig. 11b). In the top 20 predicted residues, when using the
coefficient set 007 (the no vdW option), AbEMap found 10 of the true 19 epitope residues for 2W9E

Fig. 10 | Results of epitope mapping for two lysozyme-antibody complexes using each of the three epitope-mapping modes in AbEMap (X-ray
structure, model or sequence based). a–f, All figures show the HEW lysozyme in surface view. Blue to red shows increasing predicted likelihood
scores. The orange cartoons show the shark single-domain antigen receptor (PDB ID 2I24) in the complex 2I25, and the green cartoons show the D1.3
anti-HEW lysozyme antibody (PDB ID 1VFA) in the complex 1VFB. Whenever the cartoon is semi-transparent, the epitope-mapping result on the HEW
lysozyme is shown for the other antibody. Panels a,c and e show, respectively, mapping results for the 2I24 antibody on 3LZT when the antibody 2I24
is defined by its X-ray structure, its AlphaFold2-generated model and just its sequence. Panels b,d and f show, respectively, mapping results for the
1VFA antibody on 8LYZ when the antibody 1VFA is defined by its X-ray structure, its AlphaFold2-generated model and just its sequence. As shown,
the results for the two complexes are similar when using the independently solved X-ray structures. In the 20 top-ranked residues, AbeMap finds
~50% of the true epitope residues in both cases. When using the Alphafold2 models, the results get slightly better for 2I25 but slightly worse for 1VFB.
However, the predictions are poor for both complexes when using the internal homology modeling of AbeMap, because most predicted antibody
residues are in a region of the lysozyme on the opposite side from true antibody binding.
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and 14 of the true 24 epitope residues for 3MXW (Supplementary Table 1). The results of epitope
mapping using the AlphaFold2-generated models of antibodies 2W9D and 3MXV, respectively, are
shown in Fig. 11c,d. In the top 20 predicted residues, mapping with AlphaFold2 models without
templates found 13 epitope residues on 1QM1, thus almost the same as with the X-ray structure of
the antibody, but only 4 epitope residues on 3M1N, representing a major drop in prediction accuracy.
By using antibody templates in AlphaFold2, the results became even slightly worse, with only 12 and
3 epitope residues, respectively, identified. Results of mapping based only on the FASTA sequences of
2W9D and 3MXV, excluding the true complexes 2W9E and 3MXW, respectively, are shown in

a b

c d

e f

Fig. 11 | Mapping the epitopes for complexes 2W9E and 3MXW. a–f, The first complex is a Fab fragment of a
therapeutic antibody binding a fragment of a human prion protein. The second complex includes the crystal structure
of sonic hedgehog bound to a fab fragment. As for the lysozyme-antibody complexes shown in Fig. 10, using the
X-ray structures, AbeMap finds ~50% of true epitope residues in the 20 top-ranked residues (panels a and b). Using
the AlphaFold2-generated models of antibodies, AbeMap finds almost the same residues for 2W9E as with the X-ray
structure of the antibody but only four epitope residues for 3MXW, in this latter case representing a major drop in
prediction accuracy (panels c and d, respectively). When using internal homology models and considering the 20
top-ranked residues, the results are better than with the antibody X-ray structure for 2W9E but worse for 3MXW
(panels e and f). However, the differences are moderate, emphasizing that the use of homology models may provide
prediction accuracy similar to that when X-ray structures are used.
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Fig. 11e,f. Using internal homology models in the top 20 predicted residues and the coefficient set 007
(the no vdW option), AbEMap found 14 of the true 19 residues for 2W9E and 9 of the true 24 epitope
residues for 3MXW (Supplementary Table 1). Thus, the results were better than the ones obtained by
using the antibody X-ray structure for 2W9E but worse for 3MXW (10 and 14 correct residue
predictions, respectively). However, in both cases, the results were better than the ones obtained by
using the Alphafold2 models (13 and 4 correct residues, respectively).

Summary of the various AbEMap applications supported by source data
The most complex application of AbEMap is to map the epitopes on a given antigen crystal structure
if only the sequence of the antibody is known and is entered by the user. We provide the results for
such applications to the 40 antigens from the widely accepted protein–protein docking BM552. In the
resulting PDB files, the thermal factors were changed to our protocol’s score to reflect the likelihood
of each atom being in the epitope when in complex with the respective antibody (see https://doi.org/
10.6084/m9.figshare.19652130.v2). The results also include the residue-based summary confusion
matrix. The text file contains the TP, FP, false negative and true negative counts for each
antibody–antigen complex at different residue-ranking thresholds (Top1, Top5, Top10,… Top120).
This confusion matrix was used to generate Fig. 1l.

The simplest application of AbEMap is using X-ray crystal structures for both an antigen and an
antibody (bound or unbound). We also provide the results of this type of application to the files of the
40 antigens and corresponding antibodies in the BM5 set52, with the thermal factors changed to our
protocol’s score (see https://doi.org/10.6084/m9.figshare.19651314.v4). As in the previous paragraph,
the text file contains the summary confusion matrix, which was used to generate Fig. 2.

AbEMap was also applied to the 23 antibody–antigen complexes that were more recently added to
the docking benchmark set (BM5.5)29. However, AbEMap was unable to provide antibody models for
two of the complexes, and hence we present results for the remaining 21 targets (see https://doi.org/
10.6084/m9.figshare.19651428.v4). The thermal factors were again changed to our protocol’s score
and are given by using the antigen crystal structure and either (i) the antibody crystal structure or (ii)
only the antibody sequence. We also provide the confusion matrix, which was used to generate Fig. 4.

Finally, we present AbEMap results using the antigen X-ray structures in the BM5 set and
antibody models predicted by the Alphafold2 program40, both with and without templates (see
https://doi.org/10.6084/m9.figshare.21546897.v1). This data set refers to the summary results shown
in Table 1. The results include (i) the top AlphaFold2-predicted antibody models using the program
with templates or (ii) the top AlphaFold2-predicted antibody models obtained without templates. We
add the corresponding pdb files of the AbEMap’s results for (iii) using the AlphaFold2 antibody
models obtained with templates and (iv) using the AlphaFold2 antibody models obtained without
templates. As in the other applications, the thermal factors were changed to our protocol’s score to
reflect the likelihood of each atom being in the epitope when in complex with the respective anti-
bodies. The confusion matrices are shown for the AbEMap results using the AlphaFold2 models (v)
with templates and (vi) without templates.

Reporting summary
Further information on research design is available in the Nature Portfolio Reporting Summary
linked to this article.

Data availability
Data for all cases tested in the benchmark set used can be found in the following figshare link: https://
doi.org/10.6084/m9.figshare.c.6295842.v1. Detailed results and direct links for the server results are
shown in Anticipated results.

Code availability
AbeMap is available as a server at https://abemap.cluspro.org/ free of charge for non-commercial
applications. The server can be used without registration, but in that case, the results will be publicly
accessible. The advantage of registering is that the job does not show up on the website, but this
option is available only to users with educational or governmental email addresses. The server
provides options to view the results online, but protein visualization tools allow for more convenient
analyses. We use and recommend PyMOL, which was used to demonstrate the analysis of results in
this protocol.
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give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are 
included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses
/by/4.0/




	The ClusPro AbEMap web server for the prediction of antibody epitopes
	Antibodies play an important role in the immune system by binding to molecules called antigens at their respective epitopes. These interfaces or epitopes are structural entities determined by the interactions between an antibody and an antigen, making the
	Introduction
	The AbEMap algorithm and server overview
	Protein datasets used for testing AbEMap
	Performance measures
	Applications of the method
	Epitope mapping starting from an antibody X-ray structure
	Epitope mapping starting from modeled antibody structures (provided by the user)
	Epitope mapping starting from antibody sequences
	Comparison with existing methods
	Limitations

	Materials
	Equipment

	Procedure
	Entering the basic inputs
	Submitting the job and obtaining the results
	Analyzing the results

	Troubleshooting
	Timing
	Anticipated results
	Mapping hen egg white lysozyme epitopes binding two different antibodies
	Examples of successful mapping using homology models of antibodies
	Summary of the various AbEMap applications supported by source data
	Reporting summary
	References
	References

	References
	ACKNOWLEDGMENTS




