Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Graphene–molecule–graphene single-molecule junctions to detect electronic reactions at the molecular scale

Abstract

The ability to measure the behavior of a single molecule during a reaction implies the detection of inherent dynamic and static disordered states, which may not be represented when measuring ensemble averages. Here, we describe the building of devices with graphene–molecule–graphene single-molecule junctions integrated into an electrical circuit. These devices are simple to build and are stable, showing tolerance to mechanical changes, solution environment and voltage stimulation. The design of a conductive channel based on a single molecule enables single-molecule detection and is sensitive to variations in physical properties and chemical structures of the detected molecules. The on-chip setup of single-molecule junctions further offers complementary metal–oxide–semiconductor (CMOS) compatibility, enabling logic functions in circuit elements, as well as deciphering of reaction intermediates. We detail the experimental procedure to prepare graphene transistor arrays as a basis for single-molecule junctions and the preparation of nanogapped carboxyl-terminal graphene electrodes by using electron-beam lithography and oxygen plasma etching. We describe the basic design of a molecular bridge with desired functions and terminals to form covalent bonds with electrode arrays, via a chemical reaction, to construct stably integrated single-molecule devices with a yield of 30−50% per chip. The immobilization of the single molecules is then characterized by using inelastic electron tunneling spectra, single-molecule imaging and fluorescent spectra. The whole protocol can be implemented within 2 weeks and requires users trained in using ultra-clean laboratory facilities and the aforementioned instrumentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustrations of potential applications using single-molecule devices.
Fig. 2: A comparison of different single-molecule junctions.
Fig. 3: Preparation of graphene FETs.
Fig. 4: Preparation of single-molecule devices.
Fig. 5: Schematic diagram of the characterization system for single-molecule devices.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research paper46. The raw datasets are too large to be publicly shared but are available for research purposes from the corresponding author upon reasonable request.

References

  1. Coontz, R. & Hanson, B. Not so simple. Science 305, 957 (2004).

    Article  CAS  Google Scholar 

  2. Barkai, E., Jung, Y. J. & Silbey, R. Theory of single-molecule spectroscopy: beyond the ensemble average. Annu. Rev. Phys. Chem. 55, 457–507 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Zrimsek, A. B. et al. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev. 117, 7583–7613 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Lu, H. P., Xun, L. & Xie, X. S. Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Liu, C. et al. Single polymer growth dynamics. Science 358, 352–355 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Florin, E. L., Moy, V. T. & Gaub, H. E. Adhesion forces between individual ligand-receptor pairs. Science 264, 415–417 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Li, Y., Yang, C. & Guo, X. Single-molecule electrical detection: a promising route toward the fundamental limits of chemistry and life science. Acc. Chem. Res. 53, 159–169 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Xin, N. et al. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 1, 211–230 (2019).

    Article  Google Scholar 

  9. Venkatesan, B. M. & Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6, 615–624 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    Article  CAS  Google Scholar 

  11. Xiang, D., Wang, X., Jia, C., Lee, T. & Guo, X. Molecular-scale electronics: from concept to function. Chem. Rev. 116, 4318–4440 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Li, T., Hu, W. & Zhu, D. Nanogap electrodes. Adv. Mater. 22, 286–300 (2010).

    Article  PubMed  Google Scholar 

  13. Jia, C. & Guo, X. Molecule-electrode interfaces in molecular electronic devices. Chem. Soc. Rev. 42, 5642–5660 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Su, T. A., Neupane, M., Steigerwald, M. L., Venkataraman, L. & Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 1, 16002 (2016).

    Article  CAS  Google Scholar 

  15. Xu, B. & Tao, N. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997).

    Article  CAS  Google Scholar 

  18. Park, H., Lim, A. K. L., Alivisatos, A. P., Park, J. & McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999).

    Article  CAS  Google Scholar 

  19. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Gehring, P. et al. Field-effect control of graphene–fullerene thermoelectric nanodevices. Nano Lett. 17, 7055–7061 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Burzurí, E. et al. Sequential electron transport and vibrational excitations in an organic molecule coupled to few-layer graphene electrodes. ACS Nano 10, 2521–2527 (2016).

    Article  PubMed  Google Scholar 

  22. Burzurí, E. et al. Spin-state dependent conductance switching in single molecule-graphene junctions. Nanoscale 10, 7905–7911 (2018).

    Article  PubMed  Google Scholar 

  23. Island, J. O. et al. Fabrication of hybrid molecular devices using multi-layer graphene break junctions. J. Phys. Condens. Matter 26, 474205 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Prins, F. et al. Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 11, 4607–4611 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Lau, C. S. et al. Redox-dependent Franck–Condon blockade and avalanche transport in a graphene-fullerene single-molecule transistor. Nano Lett. 16, 170–176 (2015).

    Article  PubMed  Google Scholar 

  26. Limburg, B. et al. Anchor groups for graphene-porphyrin single-molecule transistors. Adv. Funct. Mater. 28, 1803629 (2018).

    Article  Google Scholar 

  27. Mol, J. A. et al. Graphene-porphyrin single-molecule transistors. Nanoscale 7, 13181–13185 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Thomas, J. O. et al. Understanding resonant charge transport through weakly coupled single-molecule junctions. Nat. Commun. 10, 4628 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pei, T. et al. Exchange-induced spin polarization in a single magnetic molecule junction. Nat. Commun. 13, 4506 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, S. et al. Charge transport through single-molecule bilayer-graphene junctions with atomic thickness. Chem. Sci. 13, 5854–5859 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cao, Y. et al. Building high-throughput molecular junctions using indented graphene point contacts. Angew. Chem. Int. Ed. Engl. 51, 12228–12232 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Gu, C. H., Su, D. K., Jia, C. C., Ren, S. Z. & Guo, X. F. Building nanogapped graphene electrode arrays by electroburning. RSC Adv. 8, 6814–6819 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo, X. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356–359 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Jia, C. et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 352, 1443–1445 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Jia, C., Ma, B., Xin, N. & Guo, X. Carbon electrode-molecule junctions: a reliable platform for molecular electronics. Acc. Chem. Res. 48, 2565–2575 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Xin, N. et al. Stereoelectronic effect-induced conductance switching in aromatic chain single-molecule junctions. Nano Lett. 17, 856–861 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Meng, L. et al. Atomically precise engineering of single-molecule stereoelectronic effect. Angew. Chem. Int. Ed. Engl. 60, 12274–12278 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Yang, C. et al. Complete deciphering of the dynamic stereostructures of a single aggregation-induced emission molecule. Matter 5, 1224–1234 (2022).

    Article  CAS  Google Scholar 

  39. Wen, H. et al. Complex formation dynamics in a single-molecule electronic device. Sci. Adv. 2, e1601113 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhou, C. et al. Direct observation of single-molecule hydrogen-bond dynamics with single-bond resolution. Nat. Commun. 9, 807 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu, Z. et al. A single-molecule electrical approach for amino acid detection and chirality recognition. Sci. Adv. 7, eabe4365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, S. et al. Real-time observation of the dynamics of an individual rotaxane molecular shuttle using a single-molecule junction. Chem 8, 243–252 (2022).

    Article  CAS  Google Scholar 

  43. Guo, Y., Yang, C., Jia, C. & Guo, X. Accurate single-molecule indicator of solvent effects. JACS Au 1, 2271–2279 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gu, C. et al. Label-free dynamic detection of single-molecule nucleophilic-substitution reactions. Nano Lett. 18, 4156–4162 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Yang, C. et al. Single-molecule electrical spectroscopy of organocatalysis. Matter 4, 2874–2885 (2021).

    Article  CAS  Google Scholar 

  46. Yang, C. et al. Unveiling the full reaction path of the Suzuki–Miyaura cross-coupling in a single-molecule junction. Nat. Nanotechnol. 16, 1214–1223 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, C. et al. Electric field-catalyzed single-molecule Diels-Alder reaction dynamics. Sci. Adv. 7, eabf0689 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo, Y. et al. Accurate single-molecule kinetic isotope effects. J. Am. Chem. Soc. 144, 3146–3153 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Meng, L. et al. Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nat. Commun. 10, 1450 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xin, N. et al. Tuning charge transport in aromatic-ring single-molecule junctions via ionic-liquid gating. Angew. Chem. Int. Ed. Engl. 57, 14026–14031 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Xin, N. et al. Control of unipolar/ambipolar transport in single‐molecule transistors through interface engineering. Adv. Electron. Mater. 6, 1901237 (2020).

    Article  CAS  Google Scholar 

  52. Xin, N. et al. Tunable symmetry-breaking-induced dual functions in stable and photoswitched single-molecule junctions. J. Am. Chem. Soc. 143, 20811–20817 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Stefani, D. et al. Large conductance variations in a mechanosensitive single-molecule junction. Nano Lett. 18, 5981–5988 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vazquez, H. et al. Probing the conductance superposition law in single-molecule circuits with parallel paths. Nat. Nanotechnol. 7, 663–667 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Greenwald, J. E. et al. Highly nonlinear transport across single-molecule junctions via destructive quantum interference. Nat. Nanotechnol. 16, 313–317 (2020).

    Article  PubMed  Google Scholar 

  56. Zhang, L. et al. Electrochemical and electrostatic cleavage of alkoxyamines. J. Am. Chem. Soc. 140, 766–774 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Venkataraman, L. et al. Electronics and chemistry: varying single-molecule junction conductance using chemical substituents. Nano Lett. 7, 502–506 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, Y. et al. Distinguishing diketopyrrolopyrrole isomers in single-molecule junctions via reversible stimuli-responsive quantum interference. J. Am. Chem. Soc. 140, 6531–6535 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Su, T. A., Li, H., Steigerwald, M. L., Venkataraman, L. & Nuckolls, C. Stereoelectronic switching in single-molecule junctions. Nat. Chem. 7, 215–220 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Huang, S. et al. Identifying single bases in a DNA oligomer with electron tunnelling. Nat. Nanotechnol. 5, 868–873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao, Y. et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat. Nanotechnol. 9, 466–473 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhu, J. et al. Solution-processable carbon nanoelectrodes for single-molecule investigations. J. Am. Chem. Soc. 138, 2905–2908 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Xu, Q. et al. Single electron transistor with single aromatic ring molecule covalently connected to graphene nanogaps. Nano Lett. 17, 5335–5341 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Caneva, S. et al. Mechanically controlled quantum interference in graphene break junctions. Nat. Nanotechnol. 13, 1126–1131 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. El Abbassi, M. et al. Robust graphene-based molecular devices. Nat. Nanotechnol. 14, 957–961 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Gehring, P. et al. Distinguishing lead and molecule states in graphene-based single-electron transistors. ACS Nano 11, 5325–5331 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nef, C. et al. High-yield fabrication of nm-size gaps in monolayer CVD graphene. Nanoscale 6, 7249–7254 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Cully, J. J., Swett, J. L., Willick, K., Baugh, J. & Mol, J. A. Graphene nanogaps for the directed assembly of single-nanoparticle devices. Nanoscale 13, 6513–6520 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Lau, C. S., Mol, J. A., Warner, J. H. & Briggs, G. A. D. Nanoscale control of graphene electrodes. Phys. Chem. Chem. Phys. 16, 20398–20401 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Agrawal, S., Raghuveer, M. S., Kroger, R. & Ramanath, G. Electrical current-induced structural changes and chemical functionalization of carbon nanotubes. J. Appl. Phys. 100, 094314 (2006). 21.

    Article  Google Scholar 

  71. Ullmann, K. et al. Single-molecule junctions with epitaxial graphene nanoelectrodes. Nano Lett. 15, 3512–3518 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Tincu, B. et al. Investigation of plasma-assisted functionalization of pristine single layer graphene. Chem. Phys. Lett. 789, 139330 (2022).

    Article  CAS  Google Scholar 

  73. Cao, Y., Dong, S., Liu, S., Liu, Z. & Guo, X. Toward functional molecular devices based on graphene molecule junctions. Angew. Chem. Int. Ed. Engl. 52, 3906–3910 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Imai-Imada, M. et al. Orbital-resolved visualization of single-molecule photocurrent channels. Nature 603, 829–834 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge primary financial support from the National Key R&D Program of China (2021YFA1200101 and 2022YFE0128700), the National Natural Science Foundation of China (22150013, 21727806 and 21933001), the Tencent Foundation through the XPLORER PRIZE “Frontiers Science Center for New Organic Matter” at Nankai University (63181206) and the Natural Science Foundation of Beijing (2222009).

Author information

Authors and Affiliations

Authors

Contributions

Chen Yang, Caiyao Yang and X.G. designed and created the figures. Chen Yang, Caiyao Yang, Y.G. and J.F. performed the experiments and wrote the manuscript. X.G. supervised the research and edited the manuscript.

Corresponding author

Correspondence to Xuefeng Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Jia, C. et al. Science 352, 1443−1445 (2016): https://doi.org/10.1126/science.aaf6298

Yang, C. et al. Nat. Nanotechnol. 16, 1214−1223 (2021): https://doi.org/10.1038/s41565-021-00959-4

Yang, C. et al. Sci. Adv. 7, eabf0689 (2021): https://doi.org/10.1126/sciadv.abf0689

Supplementary information

Supplementary Information

Supplementary Note and Figs. 1–12.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Yang, C., Guo, Y. et al. Graphene–molecule–graphene single-molecule junctions to detect electronic reactions at the molecular scale. Nat Protoc 18, 1958–1978 (2023). https://doi.org/10.1038/s41596-023-00822-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00822-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing