Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A ‘print–pause–print’ protocol for 3D printing microfluidics using multimaterial stereolithography

An Addendum to this article was published on 10 March 2023

Abstract

Methods to make microfluidic chips using 3D printers have attracted much attention because these simple procedures allow rapid fabrication of ready-to-use products from digital 3D designs with minimal human intervention. Printing high-resolution chips that are simultaneously transparent, biocompatible and contain regions of dissimilar materials is an ongoing challenge. Transparency allows for the optical inspection of specimens containing cells and labeled biomolecules inside the chip. Being able to use different materials for different layers in the product increases the number of potential applications. In this ‘print–pause–print’ protocol, we describe detailed strategies for fabricating transparent biomicrofluidic devices and multimaterial chips using stereolithographic 3D printing. To print transparent biomicrofluidic chips, we developed a transparent resin based on poly(ethylene glycol) diacrylate (PEG-DA) (average molecular weight: 250 g/mol, PEG-DA-250) and a smooth chip surface technique achieved using glass. Cells can be successfully cultured and visualized on PEG-DA-250 prints and inside PEG-DA-250 microchannels. The multimaterial potential of the technique is exemplified using a molecular diffusion device that comprises parts made of two different materials: the channel walls, which are water impermeable, and a porous barrier structure, which is permeable to small molecules that diffuse through it. The two materials were prepared from two different molecular-weight PEG-DA-based printing resins. Alignment of the two dissimilar material structures is performed automatically by the printer during the printing process, which only requires a simple pause step to exchange the resins. The procedure takes less than 1 h and can facilitate chip-based applications including biomolecule analysis, cell biology, organ-on-a-chip and tissue engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stereolithographic 3D-printing procedure for fabricating a microfluidic chip.
Fig. 2: PPP protocol for 3D-printing microfluidic devices by stereolithography.
Fig. 3: Schematic drawing of the 3D view and cross-section of the 3D-printed microfluidic chips.
Fig. 4: Schematic images of the fabrication process of 3D-printing multimaterial microfluidic chips.
Fig. 5: Selected sliced layer images of the 3D-printed cross-channel diffusion chip obtained using slicing software (Autodesk Print Studio) as in Steps 4 and 5.
Fig. 6: Selected sliced layer images of the 3D-printed symmetric channel diffusion chip obtained using slicing software (Autodesk Print Studio) as in Steps 4 and 5.
Fig. 7: Cytocompatibility study using surfaces that were 3D printed using the PEG-DA-250 resin with 0.4% (wt/wt) photoinitiator (IRG).
Fig. 8: Results of the molecule diffusion test with both cross-channel diffusion chip and symmetric-channel diffusion chip.

Similar content being viewed by others

Data Availability

Some of the data are available from previous publications13,14. We uploaded the .STL files of three chips that we included in this protocol on figureshare.com. (https://doi.org/10.6084/m9.figshare.19739269.v1)

References

  1. Folch, A. Introduction to BioMEMS (CRC Press, 2012).

  2. Liu, P. & Mathies, R. A. Integrated microfluidic systems for high-performance genetic analysis. Trends Biotechnol. 27, 572–581 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Duncombe, T. A., Tentori, A. M. & Herr, A. E. Microfluidics: reframing biological enquiry. Nat. Rev. Mol. Cell Biol. 16, 554–567 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elvira, K. S., Casadevall i Solvas, X., Wootton, R. C. R. & DeMello, A. J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 5, 905–915 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. & Ingber, D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2003).

    Article  Google Scholar 

  6. Weibel, D. B., Diluzio, W. R. & Whitesides, G. M. Microfabrication meets microbiology. Nat. Rev. Microbiol. 5, 209–218 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Hsu, C.-H. & Folch, A. Spatio-temporally-complex concentration profiles using a tunable chaotic micromixer. Appl. Phys. Lett. 89, 144102 (2006).

    Article  Google Scholar 

  8. Lam, E. W., Cooksey, G. A., Finlayson, B. A. & Folch, A. Microfluidic circuits with tunable flow resistances. Appl. Phys. Lett. 89, 164105 (2006).

    Article  Google Scholar 

  9. Au, A. K., Huynh, W., Horowitz, L. F. & Folch, A. 3D-printed microfluidics. Angew. Chem. Int. Ed. 55, 3862–3881 (2016).

    Article  CAS  Google Scholar 

  10. Bhattacharjee, N., Urrios, A., Kang, S. & Folch, A. The upcoming 3D-printing revolution in microfluidics. Lab Chip 16, 1720–1742 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nielsen, A. V., Beauchamp, M. J., Nordin, G. P. & Woolley, A. T. 3D printed microfluidics. Annu. Rev. Anal. Chem. 13, 45–65 (2020).

    Article  Google Scholar 

  12. Naderi, A., Bhattacharjee, N. & Folch, A. Digital manufacturing for microfluidics. Annu. Rev. Biomed. Eng. 21, 325–364 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Urrios, A. et al. 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab Chip 16, 2287–2294 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, Y. T., Castro, K., Bhattacharjee, N. & Folch, A. Digital manufacturing of selective porous barriers in microchannels using multi-material stereolithography. Micromachines 9, 125 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gong, H., Beauchamp, M., Perry, S., Woolley, A. T. & Nordin, G. P. Optical approach to resin formulation for 3D printed microfluidics. RSC Adv. 5, 106621 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Gong, H., Woolley, A. T. & Nordin, G. P. High density 3D printed microfluidic valves, pumps, and multiplexers. Lab Chip 16, 2450–2458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, M. P. et al. Development of a 3D printer using scanning projection stereolithography. Sci. Rep. 5, 9875 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuo, A. P. et al. High-precision stereolithography of biomicrofluidic devices. Adv. Mater. Technol. 4, 1800395 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Warr, C. et al. Biocompatible PEGDA resin for 3D printing. ACS Appl. Bio. Mater. 3, 2239–2244 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Choi, N. W. et al. Microfluidic scaffolds for tissue engineering. Nat. Mater. 6, 908–915 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Yu, Y. J. et al. Hydrogel-incorporating unit in a well: 3D cell culture for high-throughput analysis. Lab Chip 18, 2604–2613 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. LaVan, D. A., McGuire, T. & Langer, R. Small-scale systems for in vivo drug delivery. Nat. Biotech. 21, 1184–1191 (2003).

    Article  CAS  Google Scholar 

  23. Zhang, X., Li, L. & Luo, C. Gel integration for microfluidic applications. Lab Chip 16, 1757–1776 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Cuchiara, M. P., Allen, A. C. B., Chen, T. M., Miller, J. S. & West, J. L. Multilayer microfluidic PEGDA hydrogels. Biomaterials 31, 5491–5497 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Sip, C. G., Bhattacharjee, N. & Folch, A. Microfluidic transwell inserts for generation of tissue culture-friendly gradients in well plates. Lab Chip 14, 302–314 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cate, D. M., Sip, C. G. & Folch, A. A microfluidic platform for generation of sharp gradients in open-access culture. Biomicrofluidics 4, 044105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Colosi, C. et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv. Mater. 28, 677–684 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Kang, E. et al. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat. Mater. 10, 877–883 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Hardin, J. O., Ober, T. J., Valentine, A. D. & Lewis, J. A. Microfluidic printheads for multimaterial 3D printing of viscoelastic inks. Adv. Mater. 27, 3279–3284 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Skylar-Scott, M. A., Mueller, J., Visser, C. W. & Lewis, J. A. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Lind, J. U. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 16, 303–308 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Johnson, B. N. et al. 3D printed anatomical nerve regeneration pathways. Adv. Funct. Mater. 25, 6205–6217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park, S. H. et al. 3D printed polymer photodetectors. Adv. Mater. 30, 1803980 (2018).

    Article  Google Scholar 

  35. Liu, W. et al. Rapid continuous multimaterial extrusion bioprinting. Adv. Mater. 29, 1604630 (2017).

    Article  Google Scholar 

  36. Choi, J. W., Kim, H. C. & Wicker, R. Multi-material stereolithography. J. Mater. Process. Technol. 211, 318–328 (2011).

    Article  CAS  Google Scholar 

  37. Zhou, C., Chen, Y., Yang, Z. & Khoshnevis, B. Digital material fabrication using mask-image-projection-based stereolithography. Rapid Prototyp. J. 19, 153–165 (2013).

    Article  Google Scholar 

  38. Zhang, X., Jiang, X. N. & Sun, C. Micro-stereolithography of polymeric and ceramic microstructures. Sens. Actuators A Phys. 77, 149–156 (1999).

    Article  CAS  Google Scholar 

  39. Chan, V., Zorlutuna, P., Jeong, J. H., Kong, H. & Bashir, R. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip 10, 2062–2070 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Gauvin, R. et al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33, 3824–3834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gong, H., Bickham, B. P., Woolley, A. T. & Nordin, G. P. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Lab Chip 17, 2899–2909 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, Y. T., Bohjanen, S., Bhattacharjee, N. & Folch, A. Partitioning of hydrogels in 3D-printed microchannels. Lab Chip 19, 3086–3093 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sigma-Aldrich Co. LLC, Product information Sigmacote (2016); https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/133/975/sl2pis.pdf

  44. Zhu, F., Friedrich, T., Nugegoda, D., Kaslin, J. & Wlodkowic, D. Assessment of the biocompatibility of three-dimensional-printed polymers using multispecies toxicity tests. Biomicrofluidics 9, 061103 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Macdonald, N. P. et al. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays. Lab Chip 16, 291–297 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants from the National Cancer Institute (5R01CA181445), the National Institute of General Medical Sciences (NIGMS R21GM137161), a Nanomedical Devices Development Project of NNFC (1711160154), Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P002007) and the GRRC program of Gyeonggi province (GRRC-TUKOREA2020-A02).

Author information

Authors and Affiliations

Authors

Contributions

Y.T.K. designed and fabricated the multimaterial microfluidic chips and wrote the paper. A.A. fabricated the multimaterial microfluidic chips and wrote the paper. A.F. advised on the project, wrote the paper and obtained funding for the project.

Corresponding author

Correspondence to Yong Tae Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Heon-ho Jeong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related Links

Key references using this protocol

Urrios, A. et al. Lab Chip 16, 2287–2294 (2016): https://doi.org/10.1039/C6LC00153J

Kim, Y. T. et al. Micromachines 9, 125 (2018): https://doi.org/10.3390/mi9030125

Kuo, A. P. et al. Adv. Mater. Technol. 4, 1800395 (2019): https://doi.org/10.1002/admt.201800395

Kim, Y. T. et al. A. Lab Chip 19, 3086–3093 (2019): https://doi.org/10.1039/C9LC00535H

Key data used in this protocol

Urrios, A. et al. Lab Chip 16, 2287–2294 (2016): https://doi.org/10.1039/C6LC00153J

Kim, Y. T. et al. Micromachines 9, 125 (2018): https://doi.org/10.3390/mi9030125

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.T., Ahmadianyazdi, A. & Folch, A. A ‘print–pause–print’ protocol for 3D printing microfluidics using multimaterial stereolithography. Nat Protoc 18, 1243–1259 (2023). https://doi.org/10.1038/s41596-022-00792-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00792-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing