Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Seed amplification assay for the detection of pathologic alpha-synuclein aggregates in cerebrospinal fluid

Abstract

Misfolded alpha-synuclein (αSyn) aggregates are a hallmark event in Parkinson’s disease (PD) and other synucleinopathies. Recently, αSyn seed amplification assays (αSyn-SAAs) have shown promise as a test for biochemical diagnosis of synucleinopathies. αSyn-SAAs use the intrinsic self-replicative nature of misfolded αSyn aggregates (seeds) to multiply them in vitro. In these assays, αSyn seeds circulating in biological fluids are amplified by a cyclical process that includes aggregate fragmentation into smaller self-propagating seeds, followed by elongation at the expense of recombinant αSyn (rec-αSyn). Amplification of the seeds allows detection by fluorescent dyes specific for amyloids, such as thioflavin T. Several αSyn-SAA reports have been published in the past under the names ‘protein misfolding cyclic amplification’ (αSyn-PMCA) and ‘real-time quaking-induced conversion’. Here, we describe a protocol for αSyn-SAA, originally reported as αSyn-PMCA, which allows detection of αSyn aggregates in cerebrospinal fluid samples from patients affected by PD, dementia with Lewy bodies or multiple-system atrophy (MSA). Moreover, this αSyn-SAA can differentiate αSyn aggregates from patients with PD versus those from patients with MSA, even in retrospective samples from patients with pure autonomic failure who later developed PD or MSA. We also describe modifications to the original protocol introduced to develop an optimized version of the assay. The optimized version shortens the assay length, decreases the amount of rec-αSyn required and reduces the number of inconclusive results. The protocol has a hands-on time of ~2 h per 96-well plate and can be performed by personnel trained to perform basic experiments with specimens of human origin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Seeding nucleation mechanism and the principle behind the amplification of misfolded αSyn aggregates.
Fig. 2: Flowchart of the protocol.
Fig. 3: Performance of the original αSyn-SAA for the detection of αSyn aggregates in CSF samples from patients with PD or MSA.
Fig. 4: Performance of optimized αSyn-SAA for the detection of αSyn aggregates in CSF samples of patients with PD.

Similar content being viewed by others

Data availability

The authors declare that the main data discussed in this protocol are available in the supporting primary research papers16,21. The raw datasets are available for research purposes from the corresponding authors upon reasonable request.

References

  1. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl Acad. Sci. USA 95, 6469–6473 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sulzer, D. & Edwards, R. H. The physiological role of α-synuclein and its relationship to Parkinson’s Disease. J. Neurochem. 150, 475–486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mehra, S., Sahay, S. & Maji, S. K. α-Synuclein misfolding and aggregation: implications in Parkinson’s disease pathogenesis. Biochim. Biophys. Acta Proteins Proteom. 1867, 890–908 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Steiner, J. A., Quansah, E. & Brundin, P. The concept of alpha-synuclein as a prion-like protein: ten years after. Cell Tissue Res. 373, 161–173 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moda, F. et al. Prions in the urine of patients with variant Creutzfeldt-Jakob disease. N. Engl. J. Med. 371, 530–539 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Concha-Marambio, L. et al. Detection of prions in blood from patients with variant Creutzfeldt-Jakob disease. Sci. Transl. Med. 8, 370ra183 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Concha-Marambio, L., Chacon, M. A. & Soto, C. Preclinical detection of prions in blood of nonhuman primates infected with variant Creutzfeldt-Jakob disease. Emerg. Infect. Dis. 26, 34–43 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fiorini, M. et al. High diagnostic accuracy of RT-QuIC assay in a prospective study of patients with suspected sCJD. Int. J. Mol. Sci. 21, 880 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Orrú, C. D. et al. Rapid and sensitive RT-QuIC detection of human Creutzfeldt-Jakob disease using cerebrospinal fluid. mBio 6, e02451-14 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Orrú, C. D. et al. A test for Creutzfeldt-Jakob disease using nasal brushings. N. Engl. J. Med. 371, 519–529 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fairfoul, G. et al. Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann. Clin. Transl. Neurol. 3, 812–818 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shahnawaz, M. et al. Development of a biochemical diagnosis of Parkinson disease by detection of α-synuclein misfolded aggregates in cerebrospinal fluid. JAMA Neurol. 74, 163–172 (2017).

    Article  PubMed  Google Scholar 

  15. Groveman, B. R. et al. Extended and direct evaluation of RT-QuIC assays for Creutzfeldt-Jakob disease diagnosis. Ann. Clin. Transl. Neurol. 4, 139–144 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Concha-Marambio, L. et al. Seed amplification assay to diagnose early Parkinson’s and predict dopaminergic deficit progression. Mov. Disord. 36, 2444–2446 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Russo, M. J. et al. High diagnostic performance of independent alpha-synuclein seed amplification assays for detection of early Parkinson’s disease. Acta Neuropathol. Commun. 9, 179 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferreira, N. D. C. & Caughey, B. Proteopathic seed amplification assays for neurodegenerative disorders. Clin. Lab. Med. 40, 257–270 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kang, U. J. et al. Comparative study of cerebrospinal fluid α-synuclein seeding aggregation assays for diagnosis of Parkinson’s disease. Mov. Disord. 34, 536–544 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Concha-Marambio, L., Shahnawaz, M. & Soto, C. Detection of misfolded α-synuclein aggregates in cerebrospinal fluid by the protein misfolding cyclic amplification platform. Methods Mol. Biol. 1948, 35–44 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Shahnawaz, M. et al. Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 578, 273–277 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Soto, C. & Pritzkow, S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 21, 1332–1340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Narayanan, A. et al. A first order phase transition mechanism underlies protein aggregation in mammalian cells. Elife 8, 1–26 (2019).

    Article  Google Scholar 

  24. Kocisko, D. A. et al. Cell-free formation of protease-resistant prion protein. Nature 370, 471–474 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Jarrett, J. T. & Lansbury, P. T. Seeding ‘one-dimensional crystallization’ of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73, 1055–1058 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Saborio, G. P., Permanne, B. & Soto, C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411, 810–813 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Saá, P., Castilla, J. & Soto, C. Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification. J. Biol. Chem. 281, 35245–35252 (2006).

    Article  PubMed  Google Scholar 

  28. Castilla, J., Saá, P. & Soto, C. Detection of prions in blood. Nat. Med. 11, 982–985 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Saá, P., Castilla, J. & Soto, C. Presymptomatic detection of prions in blood. Science 313, 92–94 (2006).

    Article  PubMed  Google Scholar 

  30. Bougard, D. et al. Detection of prions in the plasma of presymptomatic and symptomatic patients with variant Creutzfeldt-Jakob disease. Sci. Transl. Med. 8, 370ra182 (2016).

    Article  PubMed  Google Scholar 

  31. Atarashi, R. et al. Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat. Methods 4, 645–650 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Atarashi, R. et al. Simplified ultrasensitive prion detection by recombinant PrP conversion with shaking. Nat. Methods 5, 211–212 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Atarashi, R. et al. Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat. Med. 17, 175–178 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Pujols, J. et al. High-throughput screening methodology to identify alpha-synuclein aggregation inhibitors. Int. J. Mol. Sci. 18, 478 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kurnik, M. et al. Potent α-synuclein aggregation inhibitors, identified by high-throughput screening, mainly target the monomeric state. Cell Chem. Biol. 25, 1389–1402.e9 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Groveman, B. R. et al. Rapid and ultra-sensitive quantitation of disease-associated α-synuclein seeds in brain and cerebrospinal fluid by αSyn RT-QuIC. Acta Neuropathol. Commun. 6, 7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Parnetti, L. et al. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol. 18, 573–586 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Chen-Plotkin, A. S. et al. Finding useful biomarkers for Parkinson’s disease. Sci. Transl. Med. 10, eaam6003 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Emamzadeh, F. N. & Surguchov, A. Parkinson’s disease: biomarkers, treatment, and risk factors. Front. Neurosci. 12, 612 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sharma, S. et al. Biomarkers in Parkinson’s disease (recent update). Neurochem. Int. 63, 201–229 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Atik, A., Stewart, T. & Zhang, J. Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathol. 26, 410–418 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao, L. et al. Cerebrospinal fluid alpha-synuclein as a biomarker for Parkinson’s disease diagnosis: a systematic review and meta-analysis. Int. J. Neurosci. 125, 645–654 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Ganguly, U. et al. Alpha-synuclein as a biomarker of Parkinson’s disease: good, but not good enough. Front. Aging Neurosci. 13, 702639 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mollenhauer, B. et al. Antibody-based methods for the measurement of α-synuclein concentration in human cerebrospinal fluid—method comparison and round robin study. J. Neurochem. 149, 126–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Ohrfelt, A. et al. Cerebrospinal fluid alpha-synuclein in neurodegenerative disorders—a marker of synapse loss? Neurosci. Lett. 450, 332–335 (2009).

    Article  PubMed  Google Scholar 

  46. Fujiwara, H. et al. α-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol. 4, 160–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Eusebi, P. et al. Diagnostic utility of cerebrospinal fluid α-synuclein in Parkinson’s disease: a systematic review and meta-analysis. Mov. Disord. 32, 1389–1400 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Conway, K. A. et al. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl Acad. Sci. USA 97, 571–576 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ingelsson, M. Alpha-synuclein oligomers—neurotoxic molecules in Parkinson’s disease and other Lewy body disorders. Front. Neurosci. 10, 408 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tokuda, T. et al. Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology 75, 1766–1772 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Hansson, O. et al. Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimers Res. Ther. 6, 25 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Majbour, N. K. et al. Cerebrospinal α-synuclein oligomers reflect disease motor severity in DeNoPa Longitudinal Cohort. Mov. Disord. 36, 2048–2056 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Han, J.-Y., Jang, H.-S., Green, A. J. E. & Choi, Y. P. RT-QuIC-based detection of alpha-synuclein seeding activity in brains of dementia with Lewy Body patients and of a transgenic mouse model of synucleinopathy. Prion 14, 88–94 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Manne, S. et al. α-Synuclein real-time quaking-induced conversion in the submandibular glands of Parkinson’s disease patients. Mov. Disord. 35, 268–278 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Bongianni, M. et al. α-Synuclein RT-QuIC assay in cerebrospinal fluid of patients with dementia with Lewy bodies. Ann. Clin. Transl. Neurol. 6, 2120–2126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Han, J.-Y., Shin, C. & Choi, Y. P. Preclinical detection of alpha-synuclein seeding activity in the colon of a transgenic mouse model of synucleinopathy by RT-QuIC. Viruses 13, 759 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bargar, C. et al. Streamlined alpha-synuclein RT-QuIC assay for various biospecimens in Parkinson’s disease and dementia with Lewy bodies. Acta Neuropathol. Commun. 9, 62 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Iranzo, A. et al. Detection of α-synuclein in CSF by RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: a longitudinal observational study. Lancet Neurol. 20, 203–212 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. De Luca, C. M. G. et al. Efficient RT-QuIC seeding activity for α-synuclein in olfactory mucosa samples of patients with Parkinson’s disease and multiple system atrophy. Transl. Neurodegener. 8, 24 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Perra, D. et al. Alpha-synuclein seeds in olfactory mucosa and cerebrospinal fluid of patients with dementia with Lewy bodies. Brain Commun. 3, 1–11 (2021).

    Article  CAS  Google Scholar 

  61. Stefani, A. et al. Alpha-synuclein seeds in olfactory mucosa of patients with isolated REM sleep behaviour disorder. Brain 144, 1118–1126 (2021).

    Article  PubMed  Google Scholar 

  62. Singer, W. et al. Alpha-synuclein oligomers and neurofilament light chain in spinal fluid differentiate multiple system atrophy from Lewy Body synucleinopathies. Ann. Neurol. 88, 503–512 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, Z. et al. Skin α-synuclein aggregation seeding activity as a novel biomarker for Parkinson disease. JAMA Neurol. 78, 1–11 (2020).

    PubMed  PubMed Central  Google Scholar 

  64. Jung, B. C. et al. Amplification of distinct α-synuclein fibril conformers through protein misfolding cyclic amplification. Exp. Mol. Med. 49, e314 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fenyi, A. et al. Detection of alpha-synuclein aggregates in gastrointestinal biopsies by protein misfolding cyclic amplification. Neurobiol. Dis. 129, 38–43 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Rossi, M. et al. Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies. Acta Neuropathol. 140, 49–62 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Park, S.-J. et al. Establishment of method for the determination of aggregated α-synuclein in DLB patient using RT-QuIC assay. Protein Pept. Lett. 28, 115–120 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Kakuda, K. et al. Ultrasonication-based rapid amplification of α-synuclein aggregates in cerebrospinal fluid. Sci. Rep. 9, 6001 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Singer, W. et al. Alpha-synuclein oligomers and neurofilament light chain predict phenoconversion of pure autonomic failure. Ann. Neurol. 89, 1212–1220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Masuda, M. et al. Cysteine misincorporation in bacterially expressed human α-synuclein. FEBS Lett. 580, 1775–1779 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank various members of the laboratory who contributed to the identification and testing of the experimental conditions described here. This work was partially supported by grants from the NIH (R01AG055053, R01AG061069 and R01AG059321) to C.S., R21NS114884 to M.S., and R01 NS119689 to M.S. and S.P., as well as grants from the Michael J. Fox Foundation for Parkinson’s disease to C.S. and S.P., and a grant from the American Parkinson Disease Association to M.S.

Author information

Authors and Affiliations

Authors

Contributions

L.C.-M., C.M.F, S.P. and M.S. contributed to the development of the protocols. With the help of S.P., C.M.F. and M.S., L.C.-M. wrote the first draft of the article. C.S. is the principal investigator who provided funding and supervision for this research. C.S. produced the final version of the article.

Corresponding author

Correspondence to Claudio Soto.

Ethics declarations

Competing interests

L.C.-M. and C.M.F. are employees of Amprion Inc., a biotechnology company that focuses on the commercial use of SAAs (PMCA and RT-QuIC) for high-sensitivity detection of misfolded protein aggregates. C.S. is a Founder, Chief Scientific Officer and Member of the Board of Directors of Amprion Inc. The University of Texas Health Science Center at Houston has licensed patents and patent applications to Amprion. The other authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Ehraz Anis, Masato Hasegawa, Saima Zameer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Shahnawaz, M. et al. Nature 578, 273–277 (2020): https://doi.org/10.1038/s41586-020-1984-7

Shahnawaz, M. et al. JAMA Neurol. 74, 163–172 (2017): https://doi.org/10.1001/jamaneurol.2016.4547

Kang, U. J. et al. Mov. Disord. 34, 536–544 (2019): https://doi.org/10.1002/mds.27646

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Concha-Marambio, L., Pritzkow, S., Shahnawaz, M. et al. Seed amplification assay for the detection of pathologic alpha-synuclein aggregates in cerebrospinal fluid. Nat Protoc 18, 1179–1196 (2023). https://doi.org/10.1038/s41596-022-00787-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00787-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing