Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Scale-up approach for the preparation of magnetic ferrite nanocubes and other shapes with benchmark performance for magnetic hyperthermia applications

Abstract

Magnetic nanoparticles are increasingly used in medical applications, including cancer treatment by magnetic hyperthermia. This protocol describes a solvothermal-based process to prepare, at the gram scale, ferrite nanoparticles with well-defined shape, i.e., nanocubes, nanostars and other faceted nanoparticles, and with fine control of structural/magnetic properties to achieve point-of-reference magnetic hyperthermia performance. This straightforward method comprises simple steps: (i) making a homogeneous alcoholic solution of a surfactant and an alkyl amine; (ii) adding an organometallic metal precursor together with an aldehyde molecule, which acts as the key shape directing agent; and (iii) reacting the mixture in an autoclave for solvothermal crystallization. The shape of the ferrite nanoparticles can be controlled by the structure of the aldehyde ligand. Benzaldehyde and its aromatic derivatives favor the formation of cubic ferrite nanoparticles while aliphatic aldehydes result in spherical nanoparticles. The replacement of the primary amine, used in the nanocubes synthesis, with a secondary/tertiary amine results in nanoparticles with star-like shape. The well-defined control in terms of shape, narrow size distribution (below 5%), compositional tuning and crystallinity guarantees the preparation, at the gram scale, of nanocubes/star-like nanoparticles that possess, under magnetic field conditions of clinical use, specific adsorption rates comparable to or even superior to those obtained through thermal decomposition methods, which are typically prepared at the milligram scale. Here, gram-scale nanoparticle products with benchmark features for magnetic hyperthermia applications can be prepared in ~10 h with an average level of expertise in chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Block diagram of the designed protocol for the solvothermal synthesis of MNPs.
Fig. 2: Anticipated results of our gram-scale solvothermal protocol for the preparation of ferrite NPs.
Fig. 3: Tuning the size of IONCs through different experimental approaches.
Fig. 4: Scaled-up experimental data.
Fig. 5: NCs at different ferrite compositions.
Fig. 6: Aromatic aldehydes of different structures as shape-directing agents to obtain cubic NPs.
Fig. 7: Shape tuning by the choice of aldehyde structure.
Fig. 8: Star-like shaped NPs obtained through the use of benzaldehydes and alkyl amines at different chemical structures.
Fig. 9: Comparison of four samples (L1–3, P1) having the same magnetic core (14 nm IONCs) and different water transfer capping agents.

Similar content being viewed by others

Data availability

Supporting data for this protocol can be found at https://doi.org/10.6084/m9.figshare.20155535.v1.

References

  1. Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Simeonidis, K. et al. In-situ particles reorientation during magnetic hyperthermia application: shape matters twice. Sci. Rep. 6, 38382 (2016).

  3. Ulbrich, K. et al. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 116, 5338–5431 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Mai, B. T., Fernandes, S., Balakrishnan, P. B. & Pellegrino, T. Nanosystems based on magnetic nanoparticles and thermo-or pH-responsive polymers: an update and future perspectives. Acc. Chem. Res. 51, 999–1013 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Farzin, A., Etesami, S. A., Quint, J., Memic, A. & Tamayol, A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv. Healthc. Mater. 9, 1901058 (2020).

    Article  CAS  Google Scholar 

  6. Irvine, D. J. & Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 20, 321–334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mahmoudi, K., Bouras, A., Bozec, D., Ivkov, R. & Hadjipanayis, C. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. Int. J. Hyperth. 34, 1316–1328 (2018).

    Article  Google Scholar 

  8. Helena Gavilán, S. K. A. et al. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem. Soc. Rev. https://doi.org/10.1039/D1CS00427A (2021).

    Article  PubMed  Google Scholar 

  9. Tatarchuk, T., Bououdina, M., Judith Vijaya, J. & John Kennedy, L. Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications. In Int. Conf. on Nanotechnol. Nanomater. Vol. 195, 305–325 (Springer, 2016).

  10. Kefeni, K. K., Msagati, T. A., Nkambule, T. T. & Mamba, B. B. Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Mater. Sci. Eng. C. 107, 110314 (2020).

    Article  CAS  Google Scholar 

  11. Frey, N. A., Peng, S., Cheng, K. & Sun, S. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532–2542 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roca, A. et al. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. Appl. Phys. 42, 224002 (2009).

    Article  Google Scholar 

  13. Martinez-Boubeta, C. et al. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 3, 1652 (2013).

  14. Gandia, D. et al. Unlocking the potential of magnetotactic bacteria as magnetic hyperthermia agents. Small 15, 1902626 (2019).

    Article  CAS  Google Scholar 

  15. Alphandery, E., Faure, S., Seksek, O., Guyot, F. & Chebbi, I. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 5, 6279–6296 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, D. et al. Synthesis of uniform ferrimagnetic magnetite nanocubes. J. Am. Chem. Soc. 131, 454–455 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Cullity, B. D. & Graham, C. D. Introduction to Magnetic Materials (John Wiley & Sons, 2011).

  18. Fock, J. et al. On the ‘centre of gravity’method for measuring the composition of magnetite/maghemite mixtures, or the stoichiometry of magnetite-maghemite solid solutions, via 57Fe Mössbauer spectroscopy. J. Phys. D. Appl. Phys. 50, 265005 (2017).

    Article  Google Scholar 

  19. Salazar-Alvarez, G. et al. Cubic versus spherical magnetic nanoparticles: the role of surface anisotropy. J. Am. Chem. Soc. 130, 13234–13239 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Noh, S.-h et al. Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett. 12, 3716–3721 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Espinosa, A. et al. Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 10, 2436–2446 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Guardia, P. et al. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6, 3080–3091 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Guardia, P. et al. One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate. J. Mater. Chem. B 2, 4426–4434 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, L. et al. Composition tunable manganese ferrite nanoparticles for optimized T 2 contrast ability. Chem. Mater. 29, 3038–3047 (2017).

    Article  CAS  Google Scholar 

  25. Lee, J.-H. et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 6, 418–422 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Sathya, A. et al. CoxFe3–xO4 nanocubes for theranostic applications: effect of cobalt content and particle size. Chem. Mater. 28, 1769–1780 (2016).

  27. Silvestri, N. et al. Di-and tri-component spinel ferrite nanocubes: synthesis and their comparative characterization for theranostic applications. Nanoscale 13, 13665–13680 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lartigue, L. et al. Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring. Acs Nano 7, 3939–3952 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Kolosnjaj-Tabi, J. et al. Heat-generating iron oxide nanocubes: subtle “destructurators” of the tumoral microenvironment. ACS Nano 8, 4268–4283 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Mai, B. T. et al. Thermoresponsive iron oxide nanocubes for an effective clinical translation of magnetic hyperthermia and heat-mediated chemotherapy. ACS Appl. Mater. Interfaces 11, 5727–5739 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Avugadda, S. K. et al. Esterase-cleavable 2D assemblies of magnetic iron oxide nanocubes: exploiting enzymatic polymer disassembling to improve magnetic hyperthermia heat losses. Chem. Mater. 31, 5450–5463 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zyuzin, M. V. et al. Confining iron oxide nanocubes inside submicrometric cavities as a key strategy to preserve magnetic heat losses in an intracellular environment. ACS Appl. Mater. Interfaces 11, 41957–41971 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Roca, A. G. et al. Design strategies for shape-controlled magnetic iron oxide nanoparticles. Adv. Drug Deliv. Rev. 138, 68–104 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Kovalenko, M. V. et al. Fatty acid salts as stabilizers in size-and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J. Am. Chem. Soc. 129, 6352–6353 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Guardia, P., Pérez, N., Labarta, A. & Batlle, X. Controlled synthesis of iron oxide nanoparticles over a wide size range. Langmuir 26, 5843–5847 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Gao, G. et al. Shape-controlled synthesis and magnetic properties of monodisperse Fe3O4 nanocubes. Cryst. Growth Des. 10, 2888–2894 (2010).

    Article  CAS  Google Scholar 

  37. Xu, Z., Shen, C., Tian, Y., Shi, X. & Gao, H.-J. Organic phase synthesis of monodisperse iron oxide nanocrystals using iron chloride as precursor. Nanoscale 2, 1027–1032 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 104, 1153–1175 (2000).

  39. Khurshid, H. et al. Synthesis and magnetic properties of core/shell FeO/Fe3O4 nano-octopods. J. Appl. Phys. 113, 17B508 (2013).

  40. Niculaes, D. et al. Asymmetric assembling of iron oxide nanocubes for improving magnetic hyperthermia performance. ACS Nano 11, 12121–12133 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Muro-Cruces, J. et al. Precise size control of the growth of Fe3O4 nanocubes over a wide size range using a rationally designed one-pot synthesis. ACS Nano 13, 7716–7728 (2019).

  42. Gilbert, K. & Gajewski, J. Coal liquefaction model studies: free radical chain decomposition of diphenylpropane, dibenzyl ether, and phenethyl phenyl ether via. beta.-scission reactions. J. Org. Chem. 47, 4899–4902 (1982).

    Article  CAS  Google Scholar 

  43. Qiao, L. et al. Standardizing size-and shape-controlled synthesis of monodisperse magnetite (Fe3O4) nanocrystals by identifying and exploiting effects of organic impurities. ACS Nano 11, 6370–6381 (2017).

  44. Johannsen, M. et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int. J. Hyperth. 21, 637–647 (2005).

    Article  CAS  Google Scholar 

  45. Johannsen, M. et al. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur. Urol. 52, 1653–1662 (2007).

    Article  PubMed  Google Scholar 

  46. Jordan, A. et al. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater. 225, 118–126 (2001).

    Article  CAS  Google Scholar 

  47. Maier-Hauff, K. et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 103, 317–324 (2011).

    Article  PubMed  Google Scholar 

  48. Thiesen, B. & Jordan, A. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperth. 24, 467–474 (2008).

    Article  CAS  Google Scholar 

  49. Hühn, J. et al. Selected standard protocols for the synthesis, phase transfer, and characterization of inorganic colloidal nanoparticles. Chem. Mater. 29, 399–461 (2017).

    Article  Google Scholar 

  50. Fortin, J.-P. et al. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 129, 2628–2635 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Shin, Y. J. et al. Centrifugal shape sorting and optical response of polyhedral gold nanoparticles. Adv. Mater. 25, 4023–4027 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Park, J. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Gonzales-Weimuller, M., Zeisberger, M. & Krishnan, K. M. Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J. Magn. Magn. Mater. 321, 1947–1950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Castellanos-Rubio, I. et al. Outstanding heat loss via nano-octahedra above 20 nm in size: from wustite-rich nanoparticles to magnetite single-crystals. Nanoscale 11, 16635–16649 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Lak, A. et al. Fe2+ deficiencies, FeO subdomains, and structural defects favor magnetic hyperthermia performance of iron oxide nanocubes into intracellular environment. Nano Lett. 18, 6856–6866 (2018).

  56. Krishnan, S., Bhardwaj, S., Liu, S., Xing, R. & Chavali, M. Handbook of Greener Synthesis of Nanomaterials and Compounds (Elsevier Amsterdam, The Netherlands:, 2021).

  57. Tunison, B. R. Industrial alcohol. J. Franklin Inst. 190, 373–420 (1920).

  58. Richardson, J. J. & Caruso, F. Nanomedicine Toward 2040 (ACS Publications, 2020).

  59. Das, R. et al. Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia. J. Phys. Chem. C. 120, 10086–10093 (2016).

    Article  CAS  Google Scholar 

  60. Das, R. et al. Boosted hyperthermia therapy by combined AC magnetic and photothermal exposures in Ag/Fe3O4 nanoflowers. ACS Appl. Mater. Interfaces 8, 25162–25169 (2016).

  61. Sun, H. et al. Solvothermal synthesis of tunable electroactive magnetite nanorods by controlling the side reaction. J. Phys. Chem. C. 116, 5476–5481 (2012).

    Article  CAS  Google Scholar 

  62. Nemati, Z. et al. Enhanced magnetic hyperthermia in iron oxide nano-octopods: size and anisotropy effects. J. Phys. Chem. C. 120, 8370–8379 (2016).

    Article  CAS  Google Scholar 

  63. Byrappa, K. & Yoshimura, M. Handbook of Hydrothermal Technology (William Andrew, 2012).

  64. Quarta, A., Curcio, A., Kakwere, H. & Pellegrino, T. J. N. Polymer coated inorganic nanoparticles: tailoring the nanocrystal surface for designing nanoprobes with biological implications. Nanoscale 4, 3319–3334 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Connord, V., Mehdaoui, B., Tan, R., Carrey, J. & Respaud, M. An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples—a useful setup for magnetic hyperthermia applications. Rev. Sci. Instrum. 85, 093904 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Gneveckow, U. et al. Description and characterization of the novel hyperthermia‐and thermoablation‐system for clinical magnetic fluid hyperthermia. J. Med. Phys. 31, 1444–1451 (2004).

    Article  Google Scholar 

  67. Del Sol-Fernández, S. et al. Flower-like Mn-doped magnetic nanoparticles functionalized with α v β3-integrin-ligand to efficiently induce intracellular heat after alternating magnetic field exposition, triggering glioma cell death. ACS Appl. Mater. Interfaces 11, 26648–26663 (2019).

    Article  PubMed  Google Scholar 

  68. Hergt, R. & Dutz, S. Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 311, 187–192 (2007).

    Article  CAS  Google Scholar 

  69. Gutiérrez, L. et al. Aggregation effects on the magnetic properties of iron oxide colloids. Nanotechnology 30, 112001 (2019).

    Article  PubMed  Google Scholar 

  70. Périgo, E. A. et al. Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2, 041302 (2015).

    Article  Google Scholar 

  71. Pellegrino, T. et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett. 4, 703–707 (2004).

    Article  CAS  Google Scholar 

  72. Leal, M. P. et al. Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging. Nanoscale 7, 2050–2059 (2015).

    Article  Google Scholar 

  73. Salas, G. et al. Modulation of magnetic heating via dipolar magnetic interactions in monodisperse and crystalline iron oxide nanoparticles. J. Phys. Chem. C. 118, 19985–19994 (2014).

    Article  CAS  Google Scholar 

  74. Salas, G. et al. Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. J. Mater. Chem. 22, 21065–21075 (2012).

    Article  CAS  Google Scholar 

  75. Persano, S. et al. Elucidating the innate immunological effects of mild magnetic hyperthermia on U87 human glioblastoma cells: an in vitro study. Pharmaceutics 13, 1668 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bordet, A. et al. Magnetically induced continuous CO2 hydrogenation using composite iron carbide nanoparticles of exceptionally high heating power. Angew. Chem. Int. Ed. 55, 15894–15898 (2016).

    Article  CAS  Google Scholar 

  77. Martínez-Prieto, L. M. et al. Ultrastable magnetic nanoparticles encapsulated in carbon for magnetically induced catalysis. ACS Appl. Nano Mater. 3, 7076–7087 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tucek, J., Kemp, K. C., Kim, K. S. & Zboril, R. Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS Nano 8, 7571–7612 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Pellegrino, T. et al. Method for the gram-scale preparation of cubic ferrite nanocrystals for biomedical applications. International patent WO 2020/222133 (2020): https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020222133

  81. Pellegrino, T. et al. Method for the gram-scale preparation of ferrite nanoparticles for magnetic hyperthermia applications. International patent WO 2022/090316 (2022): https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2022090316

Download references

Acknowledgements

This work was funded by EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC–Specific Programme: “Ideas” Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))—ICARO no. 678109 (T.P.) and the AIRC Associazione per la Ricerca sul Cancro Foundation (AIRC IG-14527) (T.P.).

Author information

Authors and Affiliations

Authors

Contributions

H.G., G.M.R.R., N.S., B.T.M. and T.P. contributed intellectually and practically to the development of the technique.

Corresponding authors

Correspondence to Helena Gavilán or Teresa Pellegrino.

Ethics declarations

Competing interests

The authors declare that they have submitted two patents related to this work80,81. There are no additional competing financial interests.

Peer review

Peer review information

Nature Protocols thanks Ali Dadfar, Twan Lammers and Pablo Taboada for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Persano, S. et al. Pharmaceutics 13, 1668 (2021): https://doi.org/10.3390/pharmaceutics13101668

Pellegrino, T. et al. International patent WO 2020/222133 (2020): https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020222133

Pellegrino, T. et al. International patent WO 2022/090316 (2022): https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2022090316

Supplementary information

Supplementary Information

Supplementary experimental section, water transfer protocols (Boxes 1–4), characterizations, Figs. 1–23, Tables 1–3 and References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavilán, H., Rizzo, G.M.R., Silvestri, N. et al. Scale-up approach for the preparation of magnetic ferrite nanocubes and other shapes with benchmark performance for magnetic hyperthermia applications. Nat Protoc 18, 783–809 (2023). https://doi.org/10.1038/s41596-022-00779-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00779-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research