Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Growing and making nano- and microcrystals

Abstract

Thanks to recent technological advances in X-ray and micro-electron diffraction and solid-state NMR, structural information can be obtained by using much smaller crystals. Thus, microcrystals have become a valuable commodity rather than a mere stepping stone toward obtaining macroscopic crystals. Microcrystals are particularly useful for structure determination using serial data collection approaches at synchrotrons and X-ray free-electron lasers. The latter’s enormous peak brilliance and short X-ray pulse duration mean that structural information can be obtained before the effects of radiation damage are seen; these properties also facilitate time-resolved crystallography. To establish defined reaction initiation conditions, microcrystals with a desired and narrow size distribution are critical. Here, we describe milling and seeding techniques as well as filtration approaches for the reproducible and size-adjustable preparation of homogeneous nano- and microcrystals. Nanocrystals and crystal seeds can be obtained by milling using zirconium beads and the BeadBug homogenizer; fragmentation of large crystals yields micro- or nanocrystals by flowing crystals through stainless steel filters by using an HPLC pump. The approaches can be scaled to generate micro- to milliliter quantities of microcrystals, starting from macroscopic crystals. The procedure typically takes 3–5 d, including the time required to grow the microcrystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystallization phase diagram.
Fig. 2: Schematic representation of seeding with the BeadBug.
Fig. 3: Microcrystals of Scaf8.
Fig. 4: Crystal damage during imaging.
Fig. 5: Manual crystal filtration system.
Fig. 6: Analysis of seed preparation.
Fig. 7: Equipment setup, flow diagram and decision tree for the crystal-sizing procedure.
Fig. 8: Equipment setup, flow diagram and decision tree for the crystal fragmentation procedure.
Fig. 9: Microcrystals of dimensions suitable for optical pump X-ray probe experiments can often be grown from seeds.
Fig. 10: Fragmentation of large crystals yields microcrystals suitable for pump probe experiments using GDVN injection (or any other sample-delivery method).

Similar content being viewed by others

Data availability

Data and coordinates for the example proteins have been submitted to the Protein Data Bank; the PDB codes are given in Supplementary Table 1 (8A9E, 4N5R, 8A9F, 5FGT; e.g., https://www.rcsb.org/structure/4N5R). Other data are available from the authors upon reasonable request.

References

  1. Chapman, H. N., Caleman, C. & Timneanu, N. Diffraction before destruction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130313 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Grünbein, M. L. et al. Illumination guidelines for ultrafast pump-probe experiments by serial femtosecond crystallography. Nat. Methods 17, 681–684 (2020).

    Article  PubMed  Google Scholar 

  3. Schmidt, M. Mix and inject: reaction initiation by diffusion for time-resolved macromolecular crystallography. Adv. Condens. Matter Phys. 2013, 167276 (2013).

    Article  Google Scholar 

  4. Weierstall, U., Spence, J. C. & Doak, R. B. Injector for scattering measurements on fully solvated biospecies. Rev. Sci. Instrum. 83, 035108 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Barends, T. R. et al. Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350, 445–450 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Pande, K. et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352, 725–729 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coquelle, N. et al. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nat. Chem. 10, 31–37 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Barends, T. R. M., Stauch, B., Cherezov, V. & Schlichting, I. Serial femtosecond crystallography. Nat. Rev. Methods Primers 2, 59 (2022).

  9. Son, S. K., Chapman, H. N. & Santra, R. Multiwavelength anomalous diffraction at high x-ray intensity. Phys. Rev. Lett. 107, 218102 (2011).

    Article  PubMed  Google Scholar 

  10. Galli, L. et al. Towards phasing using high X-ray intensity. IUCrJ 2, 627–634 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nass, K. et al. Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams. J. Synchrotron Radiat. 22, 225–238 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Nass, K. et al. Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses. Nat. Commun. 11, 1814 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Subramanian, G., Basu, S., Liu, H., Zuo, J. M. & Spence, J. C. H. Solving protein nanocrystals by cryo-EM diffraction: multiple scattering artifacts. Ultramicroscopy 148, 87–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, W., Ishchenko, A. & Cherezov, V. Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nat. Protoc. 9, 2123–2134 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roedig, P. et al. A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Sci. Rep. 5, 10451 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oghbaey, S. et al. Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography. Acta Crystallogr. D. 72, 944–955 (2016).

    Article  CAS  Google Scholar 

  17. Mehrabi, P. et al. The HARE chip for efficient time-resolved serial synchrotron crystallography. J. Synchrotron Radiat. 27, 360–370 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weierstall, U. et al. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 5, 3309 (2014).

    Article  PubMed  Google Scholar 

  19. Botha, S. et al. Room temperature serial crystallography at synchrotron X-ray sources. Acta Crystallogr. D. 71, 387–397 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Fromme, P. & Spence, J. C. Femtosecond nanocrystallography using X-ray lasers for membrane protein structure determination. Curr. Opin. Struct. Biol. 21, 509–516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Darmanin, C. et al. Protein crystal screening and characterization for serial femtosecond nanocrystallography. Sci. Rep. 6, 25345 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beale, J. H. et al. Successful sample preparation for serial crystallography experiments. J. Appl. Crystallogr. 52, 1385–1396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stohrer, C. et al. Homogeneous batch micro-crystallization of proteins from ammonium sulfate. Acta Crystallogr. D. Biol. Crystallogr. 77, 194–204 (2021).

    Article  CAS  Google Scholar 

  24. Srinivas, V. et al. High-resolution XFEL structure of the soluble methane monooxygenase hydroxylase complex with its regulatory component at ambient temperature in two oxidation states. J. Am. Chem. Soc. 142, 14249–14266 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dods, R. et al. From macrocrystals to microcrystals: a strategy for membrane protein serial crystallography. Structure 25, 1461–1468.e2 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Schlichting, I. Serial femtosecond crystallography: the first five years. IUCrJ 2, 246–255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martin, R. W. & Zilm, K. W. Preparation of protein nanocrystals and their characterization by solid state NMR. J. Magn. Reson. 165, 162–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Kupitz, C. et al. Microcrystallization techniques for serial femtosecond crystallography using photosystem II from Thermosynechococcus elongatus as a model system. Philos. Trans. R. Soc. Lond. Biol. Sci. 369, 20130316 (2014).

    Article  Google Scholar 

  29. de la Cruz, M. J. et al. Micro- and nanocrystal preparation for MicroED and XFEL serial crystallography by fragmentation of imperfect crystals. Protocol Exchange https://doi.org/10.1038/protex.2017.010 (2017).

  30. Lee, D. B. et al. Supersaturation-controlled microcrystallization and visualization analysis for serial femtosecond crystallography. Sci. Rep. 8, 2541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Falkner, J. C. et al. Generation of size-controlled, submicrometer protein crystals. Chem. Mater. 17, 2679–2686 (2005).

    Article  CAS  Google Scholar 

  32. Ibrahim, M. et al. Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures. Struct. Dyn. 2, 041705 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Coe, J. et al. Crystallization of photosystem II for time-resolved structural studies using an X-ray free electron laser. Methods Enzymol. 557, 459–482 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Murakawa, T. et al. Microcrystal preparation for serial femtosecond X-ray crystallography of bacterial copper amine oxidase. Acta Crystallogr. F. Struct. Biol. Commun. 77, 356–363 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kern, J. et al. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science 340, 491–495 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Young, I. D. et al. Structure of photosystem II and substrate binding at room temperature. Nature 540, 453–457 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Suga, M. et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543, 131–135 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Doak, R. B. et al. Crystallography on a chip - without the chip: sheet-on-sheet sandwich. Acta Crystallogr. D. Struct. Biol. 74, 1000–1007 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sorigue, D. et al. Mechanism and dynamics of fatty acid photodecarboxylase. Science 372, eabd5687 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Nass, K. et al. Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ 3, 180–191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Woodhouse, J. et al. Photoswitching mechanism of a fluorescent protein revealed by time-resolved crystallography and transient absorption spectroscopy. Nat. Commun. 11, 741 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zech, S. G., Wand, A. J. & McDermott, A. E. Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. J. Am. Chem. Soc. 127, 8618–8626 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Shahid, S. A. et al. Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat. Methods 9, 1212–1217 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Gati, C. et al. Serial crystallography on in vivo grown microcrystals using synchrotron radiation. IUCrJ 1, 87–94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stellato, F. et al. Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ 1, 204–212 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nogly, P. et al. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ 2, 168–176 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weinert, T. et al. Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nat. Commun. 8, 542 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Owen, R. L. et al. Low-dose fixed-target serial synchrotron crystallography. Acta Crystallogr. D. Struct. Biol. 73, 373–378 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Diederichs, K. & Wang, M. Serial synchrotron X-ray crystallography (SSX). Methods Mol. Biol. 1607, 239–272 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Sierra, R. G. et al. Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallogr. D. Biol. Crystallogr. 68, 1584–1587 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sierra, R. G. et al. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II. Nat. Methods 13, 59–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Fuller, F. D. et al. Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nat. Methods 14, 443–449 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Roedig, P. et al. High-speed fixed-target serial virus crystallography. Nat. Methods 14, 805–810 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bücker, R. et al. Serial protein crystallography in an electron microscope. Nat. Commun. 11, 996 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Grünbein, M. L. & Kovacs, G. N. Sample delivery for serial crystallography at free-electron lasers and synchrotrons. Acta Crystallogr. D. Struct. Biol. 75, 178–191 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Martiel, I., Muller-Werkmeister, H. M. & Cohen, A. E. Strategies for sample delivery for femtosecond crystallography. Acta Crystallogr. D. Biol. Crystallogr. 75, 160–177 (2019).

    Article  CAS  Google Scholar 

  57. Weierstall, U. Liquid sample delivery techniques for serial femtosecond crystallography. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130337 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Roessler, C. G. et al. Acoustic injectors for drop-on-demand serial femtosecond crystallography. Structure 24, 631–640 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baxter, E. L. et al. High-density grids for efficient data collection from multiple crystals. Acta Crystallogr. D. Struct. Biol. 72, 2–11 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schlichting, I. & Goody, R. S. Triggering methods in crystallographic enzyme kinetics. Methods Enzymol. 277, 467–490 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Rodriguez, J. A. et al. Structure of the toxic core of alpha-synuclein from invisible crystals. Nature 525, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. de la Cruz, M. J. et al. Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nat. Methods 14, 399–402 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hattne, J. et al. Analysis of global and site-specific radiation damage in cryo-EM. Structure 26, 759–766.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nass, K. Radiation damage in protein crystallography at X-ray free-electron lasers. Acta Crystallogr. D. Struct. Biol. 75, 211–218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Grünbein, M. L. et al. Effect of X-ray free-electron laser-induced shockwaves on haemoglobin microcrystals delivered in a liquid jet. Nat. Commun. 12, 1672 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Luft, J. R. & DeTitta, G. T. A method to produce microseed stock for use in the crystallization of biological macromolecules. Acta Crystallogr. D. Biol. Crystallogr. 55, 988–993 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Kern, J. et al. Purification, characterisation and crystallisation of photosystem II from Thermosynechococcus elongatus cultivated in a new type of photobioreactor. Biochim. Biophys. Acta 1706, 147–157 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Benvenuti, M. & Mangani, S. Crystallization of soluble proteins in vapor diffusion for x-ray crystallography. Nat. Protoc. 2, 1633–1651 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Chayen, N. E. & Saridakis, E. Protein crystallization: from purified protein to diffraction-quality crystal. Nat. Methods 5, 147–153 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Asherie, N. Protein crystallization and phase diagrams. Methods 34, 266–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4, 706–731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bergfors, T. Seeds to crystals. J. Struct. Biol. 142, 66–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. D’Arcy, A., Villard, F. & Marsh, M. An automated microseed matrix-screening method for protein crystallization. Acta Crystallogr. D. Biol. Crystallogr. 63, 550–554 (2007).

    Article  PubMed  Google Scholar 

  74. Schlichting, I. & Miao, J. Emerging opportunities in structural biology with X-ray free-electron lasers. Curr. Opin. Struct. Biol. 22, 613–626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tenboer, J. et al. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346, 1242–1246 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stevenson, H. P. et al. Transmission electron microscopy for the evaluation and optimization of crystal growth. Acta Crystallogr. D. Biol. Crystallogr. 72, 603–615 (2016).

    Article  CAS  Google Scholar 

  77. Rapaport, H. et al. From nucleation to engineering of crystalline architectures at air-liquid interfaces. J. Phys. Chem. B 104, 1399–1428 (2000).

    Article  CAS  Google Scholar 

  78. Tian, W. Q., Rielly, C. & Yang, H. Protein crystallisation with air bubble templates: case of gas-liquid-solid interfaces. CrystEngComm 23, 8159–8168 (2021).

    Article  CAS  Google Scholar 

  79. Becker, R., Loll, B. & Meinhart, A. Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 283, 22659–22669 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Koopmann, R. et al. In vivo protein crystallization opens new routes in structural biology. Nat. Methods 9, 259–262 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bublitz, M. et al. Structural studies of P-type ATPase-ligand complexes using an X-ray free-electron laser. IUCrJ 2, 409–420 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. DePonte, D. P. et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D. Appl. Phys. 41, 195505 (2008).

    Article  Google Scholar 

  83. Grünbein, M. L. et al. Megahertz data collection from protein microcrystals at an X-ray free-electron laser. Nat. Commun. 9, 3487 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wiedorn, M. O. et al. Rapid sample delivery for megahertz serial crystallography at X-ray FELs. IUCrJ 5, 574–584 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wiedorn, M. O. et al. Megahertz serial crystallography. Nat. Commun. 9, 4025 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sugahara, M. et al. Grease matrix as a versatile carrier of proteins for serial crystallography. Nat. Methods 12, 61–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Li, H. et al. Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature 530, 233–236 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Miller, J. R., Helprin, J. J. & Finlayson, J. S. Silicone lubricant flushed from disposable syringes: determination by atomic absorption spectrophotometry. J. Pharm. Sci. 58, 455–456 (1969).

    Article  CAS  PubMed  Google Scholar 

  89. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Boutet, S. et al. High-resolution protein structure determination by serial femtosecond crystallography. Science 337, 362–364 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hattne, J. et al. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers. Nat. Methods 11, 545–548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liang, M. N. et al. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 514–519 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Barends for making the initial versions of Figs. 1, 2, 7 and 8. We thank M. Kloos for sharing the preliminary data on fracturing LCP-grown bacteriorhodopsin crystals by filtration. We thank the Heidelberg FEL group for discussions and detailed feedback on the protocol during many XFEL beamtimes and the prior preparations. The work was supported by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

R.L.S. and I.S. conceived and established the protocols, and E.H. applied and fine-tuned the protocols for different systems. R.L.S. and I.S. wrote the manuscript with the help of E.H.

Corresponding author

Correspondence to Ilme Schlichting.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Barends, T. R. et al. Science 350, 445–450 (2015): https://doi.org/10.1126/science.aac5492

Nass, K. et al. IUCrJ 3, 180–191 (2016): https://doi.org/10.1107/S2052252516002980

Coquelle, N. et al. Nat. Chem. 10, 31–37 (2018): https://doi.org/10.1038/nchem.2853

Nass, K. et al. Nat. Commun. 11, 1814 (2020): https://doi.org/10.1038/s41467-020-15610-4

Sorigue, D. et al. Science 372, eabd5687 (2021): https://doi.org/10.1126/science.abd5687

Supplementary information

Supplementary Information

Supplementary Results 1–3, Methods, Note, Table 1 and Figs. 1–10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoeman, R.L., Hartmann, E. & Schlichting, I. Growing and making nano- and microcrystals. Nat Protoc 18, 854–882 (2023). https://doi.org/10.1038/s41596-022-00777-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00777-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing