Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A bifunctional molecule-assisted synthesis of mimics for use in probing the ubiquitination system

Abstract

Ubiquitination regulates almost every life process of eukaryotes. The study of the ubiquitin (Ub) coupling or decoupling process and the interaction study of Ub–Ub binding protein have always been the central focus. However, such studies are challenging, owing to the transient nature of Ub-coupling enzymes and deubiquitinases in the reactions, as well as the difficulty in preparing large quantities of polyubiquitinated samples. Here we describe a recently developed strategy for the efficient preparation of analogs of Ub chains and analogs for Ub coupling and uncoupling intermediates, which facilitate the study of the ubiquitination process. The strategy includes mainly the following steps: (i) the bifunctional molecule conjugation on the only cysteine (Cys) residue of a target protein (usually a Ub or Ub-conjugating enzyme), exposing an orthogonal reactive site for native chemical ligation; (ii) covalent ligation with a Ub-derived thioester, exposing a free sulfhydryl; and (iii) (optional) a disulfide bond formation with a substrate protein (mainly with only one Cys protein) through nonactivity-based cross-linking or with a deubiquitinase (mainly with several Cys residues) through activity-based cross-linking. When the bifunctional molecule and target proteins are obtained, the final products can be prepared in milligram quantities within 2 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of the CAET-assisted strategy.
Fig. 2: Synthetic route of the biofunctional molecule (CAET-Acm).
Fig. 3: Synthesis and characterization of K29-Ub chain mimics.
Fig. 4: Synthesis and characterization of Ubc2-Ub-K48Ub-Y/degron.
Fig. 5: Synthesis and characterization of Otud2-Ub-K27Ub.
Fig. 6: Identification and HDX-MS application of Otud2-Ub-K27Ub.
Fig. 7: Ub sequences and modifications.

Similar content being viewed by others

Data availability

The data associated with these results are included in the Supplementary Information and Source Data files.

References

  1. Yau, R. & Rape, M. The increasing complexity of the ubiquitin code. Nat. Cell. Biol. 18, 579–586 (2016).

    Article  CAS  Google Scholar 

  2. Oh, E., Akopian, D. & Rape, M. Principles of ubiquitin-dependent signaling. Annu. Rev. Cell. Dev. Biol. 34, 137–162 (2018).

    Article  CAS  Google Scholar 

  3. Schulman, B. A. & Harper, J. W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell. Biol. 10, 319–331 (2009).

    Article  CAS  Google Scholar 

  4. Ye, Y. & Rape, M. Building ubiquitin chains: E2 enzymes at work. Nat. Rev. Mol. Cell. Biol. 10, 755–764 (2009).

    Article  CAS  Google Scholar 

  5. Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    Article  CAS  Google Scholar 

  6. Clague, M. J., Urbe, S. & Komander, D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat. Rev. Mol. Cell Biol. 20, 338–352 (2019).

    Article  CAS  Google Scholar 

  7. Lange, S. M., Armstrong, L. A. & Kulathu, Y. Deubiquitinases: from mechanisms to their inhibition by small molecules. Mol. Cell 82, 15–29 (2022).

    Article  CAS  Google Scholar 

  8. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    Article  CAS  Google Scholar 

  9. Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291–322 (2012).

    Article  CAS  Google Scholar 

  10. Senft, D., Qi, J. & Ronai, Z. A. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat. Rev. Cancer 18, 69–88 (2018).

    Article  CAS  Google Scholar 

  11. Schmidt, M. F., Gan, Z. Y., Komander, D. & Dewson, G. Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Cell Death Differ. 28, 570–590 (2021).

    Article  CAS  Google Scholar 

  12. Cruz Walma, D. A., Chen, Z., Bullock, A. N. & Yamada, K. M. Ubiquitin ligases: guardians of mammalian development. Nat. Rev. Mol. Cell Biol. 23, 350–367 (2022).

    Article  CAS  Google Scholar 

  13. Wertz, I. E. & Wang, X. From discovery to bedside: targeting the ubiquitin system. Cell Chem. Biol. 26, 156–177 (2019).

    Article  CAS  Google Scholar 

  14. Buetow, L. & Huang, D. T. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 17, 626–642 (2016).

    Article  CAS  Google Scholar 

  15. Sui, X. et al. Development and application of ubiquitin-based chemical probes. Chem. Sci. 11, 12633–12646 (2020).

    Article  CAS  Google Scholar 

  16. Henneberg, L. T. & Schulman, B. A. Decoding the messaging of the ubiquitin system using chemical and protein probes. Cell Chem. Biol. 28, 889–902 (2021).

    Article  CAS  Google Scholar 

  17. Zhang, X. et al. An interaction landscape of ubiquitin signaling. Mol. Cell 65, 941–955 (2017).

    Article  CAS  Google Scholar 

  18. Zhao, X. et al. Identification of proteins interacting with ubiquitin chains. Angew. Chem. Int. Ed. Engl. 56, 15764–15768 (2017).

    Article  CAS  Google Scholar 

  19. Zhang, X. et al. Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat. Protoc. 13, 530–550 (2018).

    Article  CAS  Google Scholar 

  20. Lutz, J., Hollmuller, E., Scheffner, M., Marx, A. & Stengel, F. The length of a ubiquitin chain: a general factor for selective recognition by ubiquitin-binding proteins. Angew. Chem. Int. Ed. Engl. 59, 12371––12375 (2020).

    Article  Google Scholar 

  21. Streich, F. C. Jr. & Lima, C. D. Capturing a substrate in an activated RING E3/E2–SUMO complex. Nature 536, 304–308 (2016).

    Article  CAS  Google Scholar 

  22. Baek, K. et al. NEDD8 nucleates a multivalent cullin–RING–UBE2D ubiquitin ligation assembly. Nature 578, 461–466 (2020).

    Article  CAS  Google Scholar 

  23. Horn-Ghetko, D. et al. Ubiquitin ligation to F-box protein targets by SCF–RBR E3–E3 super-assembly. Nature 590, 671–676 (2021).

    Article  CAS  Google Scholar 

  24. Pao, K. C. et al. Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity. Nature 556, 381–385 (2018).

    Article  CAS  Google Scholar 

  25. Mabbitt, P. D. et al. Structural basis for RING-Cys-Relay E3 ligase activity and its role in axon integrity. Nat. Chem. Biol. 16, 1227–1236 (2020).

    Article  CAS  Google Scholar 

  26. Liang, L. J. et al. Chemical synthesis of activity-based E2-ubiquitin probes for the structural analysis of E3 ligase-catalyzed transthiolation. Angew. Chem. Int. Ed. Engl. 60, 17171–17177 (2021).

    Article  CAS  Google Scholar 

  27. Pan, M. et al. Chemical synthesis of structurally defined phosphorylated ubiquitins suggests impaired parkin activation by phosphorylated ubiquitins with a non-phosphorylated distal unit. CCS Chem. 1, 476–489 (2019).

    Article  CAS  Google Scholar 

  28. Mevissen, T. E. T. et al. Molecular basis of Lys11-polyubiquitin specificity in the deubiquitinase Cezanne. Nature 538, 402–405 (2016).

    Article  CAS  Google Scholar 

  29. Zheng, Q. et al. An E1-catalyzed chemoenzymatic strategy to isopeptide-N-ethylated deubiquitylase-resistant ubiquitin probes. Angew. Chem. Int. Ed. Engl. 59, 13496–13501 (2020).

    Article  CAS  Google Scholar 

  30. Pan, M. et al. Structural insights into Ubr1-mediated N-degron polyubiquitination. Nature 600, 334–338 (2021).

    Article  CAS  Google Scholar 

  31. Pan, M. et al. Chemical protein synthesis enabled mechanistic studies on the molecular recognition of K27-linked ubiquitin chains. Angew. Chem. Int. Ed. Engl. 58, 2627–2631 (2019).

    Article  CAS  Google Scholar 

  32. Varshavsky, A. N-degron and C-degron pathways of protein degradation. Proc. Natl Acad. Sci. USA 116, 358–366 (2019).

    Article  CAS  Google Scholar 

  33. Sherpa, D., Chrustowicz, J. & Schulman, B. A. How the ends signal the end: regulation by E3 ubiquitin ligases recognizing protein termini. Mol. Cell 82, 1424–1438 (2022).

    Article  CAS  Google Scholar 

  34. Mevissen, T. E. et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 154, 169–184 (2013).

    Article  CAS  Google Scholar 

  35. Maity, S. K., Jbara, M., Laps, S. & Brik, A. Efficient palladium-assisted one-pot deprotection of (acetamidomethyl)cysteine following native chemical ligation and/or desulfurization to expedite chemical protein synthesis. Angew. Chem. Int. Ed. Engl. 55, 8108–8112 (2016).

    Article  CAS  Google Scholar 

  36. Pan, M. et al. Quasi-racemic X-ray structures of K27-linked ubiquitin chains prepared by total chemical synthesis. J. Am. Chem. Soc. 138, 7429–7435 (2016).

    Article  CAS  Google Scholar 

  37. van Tilburg, G. B. A. et al. K27-linked diubiquitin inhibits UCHL3 via an unusual kinetic trap. Cell Chem. Biol. 28, 191–201 (2021).

    Article  Google Scholar 

  38. Flierman, D. et al. Non-hydrolyzable diubiquitin probes reveal linkage-specific reactivity of deubiquitylating enzymes mediated by S2 pockets. Cell Chem. Biol. 23, 472–482 (2016).

    Article  CAS  Google Scholar 

  39. Ye, Y. et al. Ubiquitin chain conformation regulates recognition and activity of interacting proteins. Nature 492, 266–270 (2012).

    Article  CAS  Google Scholar 

  40. Chu, G. C. et al. Cysteine-aminoethylation-assisted chemical ubiquitination of recombinant histones. J. Am. Chem. Soc. 141, 3654–3663 (2019).

    Article  CAS  Google Scholar 

  41. Brown, N. G. et al. Dual RING E3 architectures regulate multiubiquitination and ubiquitin chain elongation by APC/C. Cell 165, 1440–1453 (2016).

    Article  CAS  Google Scholar 

  42. de la Torre, D. & Chin, J. W. Reprogramming the genetic code. Nat. Rev. Genet. 22, 169–184 (2021).

    Article  Google Scholar 

  43. Tang, S. et al. Practical chemical synthesis of atypical ubiquitin chains by using an isopeptide-linked Ub isomer. Angew. Chem. Int. Ed. Engl. 56, 13333–13337 (2017).

    Article  CAS  Google Scholar 

  44. Fairhead, M. & Howarth, M. Site-specific biotinylation of purified proteins using BirA. Methods Mol. Biol. 1266, 171–184 (2015).

    Article  CAS  Google Scholar 

  45. Adams, A. L. et al. Cysteine promoted C-terminal hydrazinolysis of native peptides and proteins. Angew. Chem. Int. Ed. Engl. 52, 13062–13066 (2013).

    Article  CAS  Google Scholar 

  46. Wang, X. A., Kurra, Y., Huang, Y., Lee, Y. J. & Liu, W. R. E1-catalyzed ubiquitin C-terminal amidation for the facile synthesis of deubiquitinase substrates. ChemBioChem 15, 37–41 (2014).

    Article  CAS  Google Scholar 

  47. Qu, Q. et al. A highly efficient synthesis of polyubiquitin chains. Adv. Sci. 5, 1800234 (2018).

    Article  Google Scholar 

  48. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    Article  CAS  Google Scholar 

  49. Zheng, J. S., Tang, S., Qi, Y. K., Wang, Z. P. & Liu, L. Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nat. Protoc. 8, 2483–2495 (2013).

    Article  CAS  Google Scholar 

  50. Tang, S. et al. Chemical synthesis of membrane proteins by the removable backbone modification method. Nat. Protoc. 12, 2554–2569 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Deng, X. Meng and X. Tian in the Protein Chemistry and Proteomics Facility, Tsinghua University Technology Center for Protein Research, for protein MS analysis. This work was supported by Shanghai Rising-Star Program (no. 22QA1404900), the National Key R&D Program of China (no. 2021YFC2100201) and the National Natural Science Foundation of China (nos. 22277073, 22207070, 91849129 and 22077078). Q.Z. thanks the funding by the National Facility for Translational Medicine (Shanghai).

Author information

Authors and Affiliations

Authors

Contributions

M.P. and H.H. led the project and supervised the project. Q.Z. and M.P. designed all experiments and prepared the manuscript. G.C., Y.Y. and H.H. synthesized the bifunctional molecule. T.W., J.M. and C.Z. synthesized the free Ub chain mimics. J.M. and L.L. synthesized the Ub coupling intermediate mimics. T.W. and Y.J. synthesized the Ub decoupling intermediate mimics. Q.Z. and T.W. performed the experiments on HDX-MS and cross-linking site identification. All authors contributed to the writing of the manuscript and approved the final version.

Corresponding authors

Correspondence to Honggang Hu or Man Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Pan, M. et. al. Nature 600, 334–338 (2021): https://doi.org/10.1038/s41586-021-04097-8.

Zheng, Q. et al. Angew. Chem. In. Ed. 59, 13496–13501 (2020): https://doi.org/10.1002/anie.202002974.

Extended data

Extended Data Fig. 1 Intermediate products of the Acm-deprotection reaction and CAET-assisted NCL reaction for preparation of Ubc2-Ub-K48Ub-Y/degron.

a, RP-HPLC trace (214 nm) and ESI-MS of purified product 6. b, RP-HPLC trace (214 nm) and ESI-MS of purified product 8.

Extended Data Fig. 2 LC–MS characterization of Ub-K27C-CAET module and monitoring the reaction efficiency of the DUB intermediate mimic.

LC–MS characterization of Ub-K27C-CAET module and monitoring the reaction efficiency of the DUB intermediate mimic. a, RP-HPLC trace (214 nm) and ESI-MS of purified product 12. b, SDS–PAGE analysis of the activity-based cross-linking between the enzyme Otud2 and K27-CAET-AT2 diUb.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Methods 1 and 2.

Reporting Summary

Source data

Source Data Fig. 3

Unprocessed gels for Fig. 3.

Source Data Fig. 4

Unprocessed gels for Fig. 4c.

Source Data Fig. 5

Unprocessed gels for Fig. 5e.

Source Data Extended Data Fig. 2

Unprocessed gels for Extended Data Fig. 2b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Wang, T., Mao, J. et al. A bifunctional molecule-assisted synthesis of mimics for use in probing the ubiquitination system. Nat Protoc 18, 530–554 (2023). https://doi.org/10.1038/s41596-022-00761-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00761-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing