Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Desynchronizing the sleep­­–wake cycle from circadian timing to assess their separate contributions to physiology and behaviour and to estimate intrinsic circadian period

Abstract

Circadian clocks drive cyclic variations in many aspects of physiology, but some daily variations are evoked by periodic changes in the environment or sleep–wake state and associated behaviors, such as changes in posture, light levels, fasting or eating, rest or activity and social interactions; thus, it is often important to quantify the relative contributions of these factors. Yet, circadian rhythms and these evoked effects cannot be separated under typical 24-h day conditions, because circadian phase and the length of time awake or asleep co-vary. Nathaniel Kleitman’s forced desynchrony (FD) protocol was designed to assess endogenous circadian rhythmicity and to separate circadian from evoked components of daily rhythms in multiple parameters. Under FD protocol conditions, light intensity is kept low to minimize its impact on the circadian pacemaker, and participants have sleep–wake state and associated behaviors scheduled to an imposed non-24-h cycle. The period of this imposed cycle, Τ, is chosen so that the circadian pacemaker cannot entrain to it and therefore continues to oscillate at its intrinsic period (τ, ~24.15 h), ensuring circadian components are separated from evoked components of daily rhythms. Here we provide detailed instructions and troubleshooting techniques on how to design, implement and analyze the data from an FD protocol. We provide two procedures: one with general guidance for designing an FD study and another with more precise instructions for replicating one of our previous FD studies. We discuss estimating circadian parameters and quantifying the separate contributions of circadian rhythmicity and the sleep–wake cycle, including statistical analysis procedures and an R package for conducting the non-orthogonal spectral analysis method that enables an accurate estimation of period, amplitude and phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example schedules and body temperature rhythms for different experimental protocols.
Fig. 2: Schematic of wake-sleep and corresponding light–dark (LD) cycle effects of the FD protocol compared to the free-run protocol and to standard (entrainment) conditions.
Fig. 3: Circadian and homeostatic regulation of performance during a 42.85-h FD protocol.
Fig. 4: Circadian period estimation using FD protocols.
Fig. 5: Sleep efficiency of young participants and older participants during a 28-h T-cycle FD protocol.
Fig. 6: Percentage of recording time with SEMs during wakefulness under a 42.85-h FD protocol.

Similar content being viewed by others

Data availability

All original datasets used in the preparation of this paper contain confidential or identifiable human data and are not publicly available due to human subject research regulations. De-identified sample datasets are available upon reasonable request and are subject to internal review and approval. Execution of a materials transfer agreement is required by our institution for transfer of data.

Code availability

SAS codes for data analyses and R codes for the NOSA program can be found at https://github.com/wwang4bwh/FD-NOSA.

References

  1. Hunter, J. Of the heat of animals and vegetables. Philos. Trans. R. Soc. Lond. 68, 7–49 (1778).

    Google Scholar 

  2. Ogle, W. in St. George’s Hospital Reports (eds. Ogle, J. W. & Holmes, T.) 220–245 (John Churchill and Sons, 1866).

  3. Benedict, F. G. Studies in body-temperature. I. Influence of the inversion of the daily routine; the temperature of night-workers. Am. J. Physiol. 11, 145–169 (1904).

    Article  CAS  Google Scholar 

  4. Gibson, R. B. The effects of transposition of the daily routine on the rhythm of temperature variation. Am. J. Med. Sci. 129, 1048–1059 (1905).

    Article  Google Scholar 

  5. Kleitman, N. Sleep and Wakefulness. (University of Chicago Press, 1939).

  6. Aschoff, J., Gerecke, U. & Wever, R. Phasenbeziehungen zwischen den circadianen perioden der aktivitaet und der kerntemperatur beim menschen. Eur. J. Physiol. 295, 173–183 (1967).

    Article  CAS  Google Scholar 

  7. Aschoff, J. Desynchronization and resynchronization of human circadian rhythms. Aerosp. Med. 40, 844–849 (1969).

    CAS  Google Scholar 

  8. Mills, J. N., Minors, D. S. & Waterhouse, J. M. Proceedings: Urinary and temperature rhythms on days of abnormal length. J. Physiol. 257, 54P–55P (1976).

    CAS  Google Scholar 

  9. Mills, J. N., Minors, D. S. & Waterhouse, J. M. The physiological rhythms of subjects living on a day of abnormal length. J. Physiol. 268, 803–826 (1977).

    Article  CAS  Google Scholar 

  10. Czeisler, C. A. Human circadian physiology: internal organization of temperature, sleep-wake, and neuroendocrine rhythms monitored in an environment free of time cues. Ph.D. thesis, Stanford University (1978).

  11. Schulz, H., Bes, E. & Jobert, M. in SleepWake Disorders (eds. Meier-Ewert, K. & Okawa, M.) (Springer, 1997).

  12. Klerman, E. B., Dijk, D. J., Kronauer, R. E. & Czeisler, C. A. Simulations of light effects on the human circadian pacemaker: implications for assessment of intrinsic period. Am. J. Physiol. 270, R271–R282 (1996).

    CAS  Google Scholar 

  13. Aschoff, J. & Wever, R. Spontanperiodik des menschen bei ausschluss aller zeitgeber. Die Naturwissenschaften 49, 337–342 (1962).

    Article  Google Scholar 

  14. Aschoff, J., Gerecke, U. & Wever, R. Desynchronization of human circadian rhythms. Jpn. J. Physiol. 17, 450–457 (1967).

    Article  CAS  Google Scholar 

  15. Sulzman, F. M., Fuller, C. A. & Moore-Ede, M. C. Spontaneous internal desynchronization of circadian rythms in the squirrel monkey. Comp. Biochem. Physiol. A Physiol. 58, 63–67 (1977).

    Article  Google Scholar 

  16. Czeisler, C. A. & Jewett, M. E. in Handbook of Sleep Disorders (ed. Thorpy, M. J.) 117–137 (Marcel Dekker, 1990).

  17. Pittendrigh, C. S. & Daan, S. A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: pacemaker as clock. J. Comp. Physiol. A 106, 291–331 (1976).

    Article  Google Scholar 

  18. Carskadon, M. A. & Dement, W. C. Sleep studies on a 90-minute day. Electroencephalogr. Clin. Neurophysiol. 39, 145–155 (1975).

    Article  CAS  Google Scholar 

  19. Lavie, P. & Scherson, A. Ultrashort sleep-waking schedule. I. Evidence of ultradian rhythmicity in ‘sleep ability’. Electroencephalogr. Clin. Neurophysiol. 52, 163–174 (1981).

    Article  CAS  Google Scholar 

  20. Lavie, P. Ultrashort sleep-waking schedule III. “Gates” and “forbidden zones” for sleep. Electroencephalogr. Clin. Neurophysiol. 63, 414–425 (1986).

    Article  CAS  Google Scholar 

  21. Haimov, I. & Lavie, P. Circadian characteristics of sleep propensity function in healthy elderly: a comparison with young adults. Sleep 20, 294–300 (1997).

    Article  CAS  Google Scholar 

  22. Åkerstedt, T., Hume, K., Minors, D. & Waterhouse, J. Experimental separation of time of day and homeostatic influences on sleep. Am. J. Physiol. 274, R1162–R1168 (1998).

    Google Scholar 

  23. Kripke, D. F. et al. Circadian phase in adults of contrasting ages. Chronobiol. Int. 22, 695–709 (2005).

    Article  CAS  Google Scholar 

  24. Eastman, C. I., Suh, C., Tomaka, V. A. & Crowley, S. J. Circadian rhythm phase shifts and endogenous free-running circadian period differ between African-Americans and European-Americans. Sci. Rep. 5, 8381 (2015).

    Article  CAS  Google Scholar 

  25. Boivin, D. B. et al. Complex interaction of the sleep-wake cycle and circadian phase modulates mood in healthy subjects. Arch. Gen. Psychiatry 54, 145–152 (1997).

    Article  CAS  Google Scholar 

  26. Waterhouse, J. et al. Light of domestic intensity produces phase shifts of the circadian oscillator in humans. Neurosci. Lett. 245, 97–100 (1998).

    Article  CAS  Google Scholar 

  27. Cajochen, C., Wyatt, J. K., Czeisler, C. A. & Dijk, D. J. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness. Neuroscience 114, 1047–1060 (2002).

    Article  CAS  Google Scholar 

  28. Cohen, D. A. et al. Uncovering residual effects of chronic sleep loss on human performance. Sci. Transl. Med. 2, 14ra13 (2010).

    Article  Google Scholar 

  29. Czeisler, C. A. et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284, 2177–2181 (1999).

    Article  CAS  Google Scholar 

  30. Duffy, J. F. et al. Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc. Natl Acad. Sci. USA 108, 15602–15608 (2011).

    Article  CAS  Google Scholar 

  31. Hull, J. T., Klerman, E. B., Dijk, D. J., Czeisler, C. A. & Lockley, S. W. Human circadian period of NLP blind individual with no conscious light perception assessed under field and forced desynchrony conditions. In 72nd Cold Spring Harbor Laboratory Symposium: Clocks & Rhythms (eds. Stillman, B., Stewart D., & Grodzicker, T.) 65 (Cold Spring Harbor Laboratory, 2007).

  32. Dijk, D. J. & Czeisler, C. A. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J. Neurosci. 15, 3526–3538 (1995).

    Article  CAS  Google Scholar 

  33. Wyatt, J. K., Ritz-De Cecco, A., Czeisler, C. A. & Dijk, D. J. Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. Am. J. Physiol. Regul. Integr. Comp. Physiol. 277, R1152–R1163 (1999).

    Article  CAS  Google Scholar 

  34. Dijk, D.-J., Duffy, J. F. & Czeisler, C. A. Age-related increase in awakenings: impaired consolidation of nonREM sleep at all circadian phases. Sleep 24, 565–577 (2001).

    Article  CAS  Google Scholar 

  35. Dijk, D.-J., Duffy, J. F., Riel, E., Shanahan, T. L. & Czeisler, C. A. Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms. J. Physiol. 516, 611–627 (1999).

    Article  CAS  Google Scholar 

  36. Dijk, D.-J., Duffy, J. F. & Czeisler, C. A. Contribution of circadian physiology and sleep homeostasis to age-related changes in human sleep. Chronobiol. Int. 17, 285–311 (2000).

    Article  CAS  Google Scholar 

  37. Duffy, J. F., Rimmer, D. W. & Czeisler, C. A. Association of intrinsic circadian period with morningness-eveningness, usual wake time, and circadian phase. Behav. Neurosci. 115, 895–899 (2001).

    Article  CAS  Google Scholar 

  38. Wright, K. P. Jr., Hull, J. T. & Czeisler, C. A. Relationship between alertness, performance, and body temperature in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R1370–R1377 (2002).

    Article  CAS  Google Scholar 

  39. Münch, M. et al. Age-related attenuation of the evening circadian arousal signal in humans. Neurobiol. Aging 26, 1307–1319 (2005).

    Article  Google Scholar 

  40. Wyatt, J. K., Dijk, D.-J., Cecco, A. R.-D., Ronda, J. M. & Czeisler, C. A. Sleep-facilitating effect of exogenous melatonin in healthy young men and women is circadian-phase dependent. Sleep 29, 609–618 (2006).

    Article  Google Scholar 

  41. Cain, S. W., Rimmer, D. W., Duffy, J. F. & Czeisler, C. A. Exercise distributed across day and night does not alter circadian period in humans. J. Biol. Rhythms 22, 534–541 (2007).

    Article  Google Scholar 

  42. O’Donnell, D. et al. Comparison of subjective and objective assessments of sleep in healthy older subjects without sleep complaints. J. Sleep. Res. 18, 254–263 (2009).

    Article  Google Scholar 

  43. Lee, J. H. et al. Neurobehavioral performance in young adults living on a 28-h day for 6 weeks. Sleep 32, 905–913 (2009).

    Article  Google Scholar 

  44. Silva, E. J., Wang, W., Ronda, J. M., Wyatt, J. K. & Duffy, J. F. Circadian and wake-dependent influences on subjective sleepiness, cognitive throughput, and reaction time performance in older and young adults. Sleep 33, 481–490 (2010).

    Article  Google Scholar 

  45. Munch, M., Silva, E. J., Ronda, J. M., Czeisler, C. A. & Duffy, J. F. EEG sleep spectra in older adults across all circadian phases during NREM sleep. Sleep 33, 389–401 (2010).

    Article  Google Scholar 

  46. Duffy, J. F., Lowe, A. S., Silva, E. J. & Winkelman, J. W. Periodic limb movements in sleep exhibit a circadian rhythm that is maximal in the late evening/early night. Sleep. Med. 12, 83–88 (2011).

    Article  Google Scholar 

  47. Santhi, N. et al. Sex differences in the circadian regulation of sleep and waking cognition in humans. Proc. Natl Acad. Sci. USA 113, E2730–E2739 (2016).

    Article  CAS  Google Scholar 

  48. Lee, M. L. et al. Fragmentation of rapid eye movement and nonrapid eye movement sleep without total sleep loss impairs hippocampus-dependent fear memory consolidation. Sleep 39, 2021–2031 (2016).

    Article  Google Scholar 

  49. McHill, A. W., Hull, J. T., Wang, W., Czeisler, C. A. & Klerman, E. B. Chronic sleep curtailment, even without extended (>16-h) wakefulness, degrades human vigilance performance. Proc. Natl Acad. Sci. USA 115, 6070–6075 (2018).

    Article  CAS  Google Scholar 

  50. Zitting, K. M. et al. Young adults are more vulnerable to chronic sleep deficiency and recurrent circadian disruption than older adults. Sci. Rep. 8, 11052 (2018).

    Article  Google Scholar 

  51. Zitting, K. M. et al. Human resting energy expenditure varies with circadian phase. Curr. Biol. 28, 3685–3690.e3 (2018).

    Article  CAS  Google Scholar 

  52. Grady, S., Aeschbach, D., Wright, K. P. Jr. & Czeisler, C. A. Effect of modafinil on impairments in neurobehavioral performance and learning associated with extended wakefulness and circadian misalignment. Neuropsychopharmacology 35, 1910–1920 (2010).

    Article  CAS  Google Scholar 

  53. Wyatt, J. K., Cajochen, C., Ritz-De Cecco, A., Czeisler, C. A. & Dijk, D. J. Low-dose repeated caffeine administration for circadian-phase-dependent performance degradation during extended wakefulness. Sleep 27, 374–381 (2004).

    Article  Google Scholar 

  54. Weaver, D. R. The suprachiasmatic nucleus: a 25-year retrospective. J. Biol. Rhythms 13, 100–112 (1998).

    Article  CAS  Google Scholar 

  55. Shanahan, T. L. Circadian physiology and the plasma melatonin rhythm in humans. M.D. thesis, Harvard Medical School (1995).

  56. Scheer, F. A., Wright, K. P. Jr., Kronauer, R. E. & Czeisler, C. A. Plasticity of the intrinsic period of the human circadian timing system. PLoS One 2, e721 (2007).

    Article  Google Scholar 

  57. Czeisler, C. A. et al. Bright light resets the human circadian pacemaker independent of the timing of the sleep-wake cycle. Science 233, 667–671 (1986).

    Article  CAS  Google Scholar 

  58. Duffy, J. F. & Dijk, D. J. Getting through to circadian oscillators: why use constant routines? J. Biol. Rhythms 17, 4–13 (2002).

    Article  Google Scholar 

  59. Dijk, D. J. & Duffy, J. F. Novel approaches for assessing circadian rhythmicity in humans: a review. J. Biol. Rhythms 35, 421–438 (2020).

    Article  Google Scholar 

  60. Wright, K. P. Jr., Hughes, R., Kronauer, R. E., Dijk, D. J. & Czeisler, C. A. Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans. Proc. Natl Acad. Sci. USA 98, 14027–14032 (2001).

    Article  CAS  Google Scholar 

  61. Banich, M. T. et al. fMri studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. J. Cogn. Neurosci. 12, 988–1000 (2000).

    Article  CAS  Google Scholar 

  62. Wright, K. P. Jr., Gronfier, C., Duffy, J. F. & Czeisler, C. A. Intrinsic period and light intensity determine the phase relationship between melatonin and sleep in humans. J. Biol. Rhythms 20, 168–177 (2005).

    Article  Google Scholar 

  63. Gronfier, C., Wright, K. P. Jr., Kronauer, R. E. & Czeisler, C. A. Entrainment of the human circadian pacemaker to longer-than-24-h days. Proc. Natl Acad. Sci. USA 104, 9081–9086 (2007).

    Article  CAS  Google Scholar 

  64. Kronauer, R. E., Czeisler, C. A., Pilato, S. F., Moore-Ede, M. C. & Weitzman, E. D. Mathematical model of the human circadian system with two interacting oscillators. Am. J. Physiol. 242, R3–R17 (1982).

    CAS  Google Scholar 

  65. Borbély, A. A. A two process model of sleep regulation. Hum. Neurobiol. 1, 195–204 (1982).

    Google Scholar 

  66. Daan, S., Beersma, D. G. M. & Borbély, A. A. Timing of human sleep: recovery process gated by a circadian pacemaker. Am. J. Physiol. 246, R161–R183 (1984).

    CAS  Google Scholar 

  67. Dijk, D. J. & Czeisler, C. A. Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci. Lett. 166, 63–68 (1994).

    Article  CAS  Google Scholar 

  68. Duffy, J. F., Zitting, K. M. & Czeisler, C. A. The case for addressing operator fatigue. Rev. Hum. Factors Ergon. 10, 29–78 (2015).

    Article  Google Scholar 

  69. Muto, V. et al. Local modulation of human brain responses by circadian rhythmicity and sleep debt. Science 353, 687–690 (2016).

    Article  CAS  Google Scholar 

  70. Stepanski, E. J. & Wyatt, J. K. Use of sleep hygiene in the treatment of insomnia. Sleep. Med. Rev. 7, 215–225 (2003).

    Article  Google Scholar 

  71. Eastman, C. I., Norwood, A. A., Velez, S. L., Paech, G. M. & Crowley, S. J. 0713 SEX AND THE FORBIDDEN ZONE. Sleep 40, A264 (2017).

    Article  Google Scholar 

  72. Crowley, S. J. & Eastman, C. I. 0248 Sleep and the Forbidden Zone: Trouble for Teens. Sleep 41, A96 (2018).

    Article  Google Scholar 

  73. Johnson, M. P. et al. Short-term memory, alertness and performance: a reappraisal of their relationship to body temperature. J. Sleep. Res. 1, 24–29 (1992).

    Article  CAS  Google Scholar 

  74. Edgar, D. M., Dement, W. C. & Fuller, C. A. Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J. Neurosci. 13, 1065–1079 (1993).

    Article  CAS  Google Scholar 

  75. Franken, P. & Dijk, D. J. Circadian clock genes and sleep homeostasis. Eur. J. Neurosci. 29, 1820–1829 (2009).

    Article  CAS  Google Scholar 

  76. Klerman, E. B. in Zeitgebers, Entrainment and Masking of the Circadian System Sapporo Symposium (eds. Honma, K. & Honma, S.) 155–169 (Hokkaido Univ. Press, 2001).

  77. Kitamura, S. et al. Intrinsic circadian period of sighted patients with circadian rhythm sleep disorder, free-running type. Biol. Psychiatry 73, 63–69 (2013).

    Article  Google Scholar 

  78. Carskadon, M. A., Labyak, S. E., Acebo, C. & Seifer, R. Intrinsic circadian period of adolescent humans measured in conditions of forced desynchrony. Neurosci. Lett. 260, 129–132 (1999).

    Article  CAS  Google Scholar 

  79. Crowley, S. J. & Eastman, C. I. Free-running circadian period in adolescents and adults. J. Sleep. Res. 27, e12678 (2018).

    Article  Google Scholar 

  80. Kantermann, T. & Eastman, C. I. Circadian phase, circadian period and chronotype are reproducible over months. Chronobiol. Int. 35, 280–288 (2018).

    Article  Google Scholar 

  81. Eastman, C. I., Tomaka, V. A. & Crowley, S. J. Circadian rhythms of European and African-Americans after a large delay of sleep as in jet lag and night work. Sci. Rep. 6, 36716 (2016).

    Article  CAS  Google Scholar 

  82. Eastman, C. I., Tomaka, V. A. & Crowley, S. J. Sex and ancestry determine the free-running circadian period. J. Sleep. Res. 26, 547–550 (2017).

    Article  Google Scholar 

  83. Eastman, C. I., Molina, T. A., Dziepak, M. E. & Smith, M. R. Blacks (African Americans) have shorter free-running circadian periods than whites (Caucasian Americans). Chronobiol. Int. 29, 1072–1077 (2012).

    Article  Google Scholar 

  84. Hiddinga, A. E., Beersma & Van Den Hoofdakker, R. H. Endogenous and exogenous components in the circadian variation of core body temperature in humans. J. Sleep. Res. 6, 156–163 (1997).

    Article  CAS  Google Scholar 

  85. Hasan, S. et al. Assessment of circadian rhythms in humans: comparison of real-time fibroblast reporter imaging with plasma melatonin. FASEB J. 26, 2414–2423 (2012).

    Article  CAS  Google Scholar 

  86. Hida, A. et al. In vitro circadian period is associated with circadian/sleep preference. Sci. Rep. 3, 2074 (2013).

    Article  Google Scholar 

  87. Silva, E. J. & Duffy, J. F. Sleep inertia varies with circadian phase and sleep stage in older adults. Behav. Neurosci. 122, 928–935 (2008).

    Article  Google Scholar 

  88. Scheer, F. A., Shea, T. J., Hilton, M. F. & Shea, S. A. An endogenous circadian rhythm in sleep inertia results in greatest cognitive impairment upon awakening during the biological night. J. Biol. Rhythms 23, 353–361 (2008).

    Article  Google Scholar 

  89. Burke, T. M., Scheer, F. A., Ronda, J. M., Czeisler, C. A. & Wright, K. P. Jr. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions. J. Sleep. Res. 24, 364–371 (2015).

    Article  Google Scholar 

  90. McHill, A. W. et al. Chronic sleep restriction greatly magnifies performance decrements immediately after awakening. Sleep 42, zsz032 (2019).

    Article  Google Scholar 

  91. Lazar, A. S. et al. Circadian period and the timing of melatonin onset in men and women: predictors of sleep during the weekend and in the laboratory. J. Sleep. Res. 22, 155–159 (2013).

    Article  Google Scholar 

  92. Weitzman, E. D. et al. Effects of a prolonged 3-hour sleep-wake cycle on sleep stages, plasma cortisol, growth hormone, and body temperature in man. J. Clin. Endocrinol. Metab. 38, 1018–1030 (1974).

    Article  CAS  Google Scholar 

  93. Strijkstra, A. M., Meerlo, P. & Beersma, D. G. M. Forced desynchrony of circadian rhythms of body temperature and activity in rats. Chronobiol. Int. 16, 431–440 (1999).

    Article  CAS  Google Scholar 

  94. Koorengevel, K. M., Beersma, D. G., den Boer, J. A. & van den Hoofdakker, R. H. Mood regulation in seasonal affective disorder patients and healthy controls studied in forced desynchrony. Psychiatry Res. 117, 57–74 (2003).

    Article  Google Scholar 

  95. Yasenkov, R. & Deboer, T. Circadian regulation of sleep and the sleep EEG under constant sleep pressure in the rat. Sleep 33, 631–641 (2010).

    Article  Google Scholar 

  96. Pomplun, M. et al. The effects of circadian phase, time awake, and imposed sleep restriction on performing complex visual tasks: evidence from comparative visual search. J. Vis. 12, 14 (2012).

    Article  Google Scholar 

  97. Wotus, C. et al. Forced desynchrony reveals independent contributions of suprachiasmatic oscillators to the daily plasma corticosterone rhythm in male rats. PLoS One 8, e68793 (2013).

    Article  CAS  Google Scholar 

  98. Wu, L. J., Acebo, C., Seifer, R. & Carskadon, M. A. Sleepiness and cognitive performance among younger and older adolescents across a 28-hour forced desynchrony protocol. Sleep 38, 1965–1972 (2015).

    Article  Google Scholar 

  99. Walsh, L., McLoone, S., Ronda, J., Duffy, J. F. & Czeisler, C. A. Non-contact pressure-based sleep/wake discrimination. IEEE Trans. Biomed. Eng. 64, 1750–1760 (2017).

    Article  Google Scholar 

  100. Qian, J., Scheer, F. A., Hu, K. & Shea, S. A. The circadian system modulates the rate of recovery of systolic blood pressure after exercise in humans. Sleep 43, zsz253 (2020).

    Article  Google Scholar 

  101. Morgan, L. et al. Effects of the endogenous clock and sleep time on melatonin, insulin, glucose and lipid metabolism. J. Endocrinol. 157, 443–451 (1998).

  102. Scheer, F. A., Hilton, M. F., Mantzoros, C. S. & Shea, S. A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl Acad. Sci. USA 106, 4453–4458 (2009).

    Article  CAS  Google Scholar 

  103. Scheer, F. A. et al. Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc. Natl Acad. Sci. USA 107, 20541–20546 (2010).

    Article  CAS  Google Scholar 

  104. Buxton, O. M. et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci. Transl. Med. 4, 129ra143 (2012).

    Article  Google Scholar 

  105. Swanson, C. M. et al. Bone turnover markers after sleep restriction and circadian disruption: a mechanism for sleep-related bone loss in humans. J. Clin. l Endocrinol. Metab. 102, 3722–3730 (2017).

    Article  Google Scholar 

  106. Yuan, R. K. et al. Fasting blood triglycerides vary with circadian phase in both young and older people. Physiol. Rep. 8, e14453 (2020).

    Article  CAS  Google Scholar 

  107. Scheer, F. et al. The endogenous circadian system worsens asthma at night independent of sleep and other daily behavioral or environmental cycles. Proc. Natl Acad. Sci. USA 118, e2018486118 (2021).

    Article  Google Scholar 

  108. Chellappa, S. L. et al. Daytime eating prevents internal circadian misalignment and glucose intolerance in night work. Sci. Adv. 7, eabg9910 (2021).

    Article  CAS  Google Scholar 

  109. Chellappa, S. L. et al. Proof-of-principle demonstration of endogenous circadian system and circadian misalignment effects on human oral microbiota. FASEB J. 36, e22043 (2022).

    Article  CAS  Google Scholar 

  110. Zitting, K. M. et al. Chronic circadian disruption on a high-fat diet impairs glucose tolerance. Metabolism 130, 155158 (2022).

    Article  CAS  Google Scholar 

  111. Archer, S. N. et al. Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc. Natl Acad. Sci. USA 111, E682–E691 (2014).

    Article  CAS  Google Scholar 

  112. Chang, A. M., Buch, A. M., Bradstreet, D. S., Klements, D. J. & Duffy, J. F. Human diurnal preference and circadian rhythmicity are not associated with the CLOCK 3111C/T gene polymorphism. J. Biol. Rhythms 26, 276–280 (2011).

    Article  CAS  Google Scholar 

  113. Chang, A. M. et al. Chronotype genetic variant in PER2 is associated with intrinsic circadian period in humans. Sci. Rep. 9, 5350 (2019).

    Article  Google Scholar 

  114. Micic, G., Lovato, N., Ferguson, S. A., Burgess, H. J. & Lack, L. Circadian tau differences and rhythm associations in delayed sleep-wake phase disorder and sighted non-24-hour sleep-wake rhythm disorder. Sleep 44, zsaa132 (2021).

    Article  Google Scholar 

  115. Ben-Hamo, M. et al. Circadian forced desynchrony of the master clock leads to phenotypic manifestation of depression in rats. eNeuro 3, ENEURO.0237-16.2016 (2016).

    Article  Google Scholar 

  116. Laing, E. E. et al. Blood transcriptome based biomarkers for human circadian phase. Elife 6, e20214 (2017).

    Article  Google Scholar 

  117. Moses, J., Naitoh, P. & Johnson, L. C. The REM cycle in altered sleep/wake schedules. Psychophysioly 15, 569–575 (1978).

    Article  CAS  Google Scholar 

  118. Micic, G. et al. Circadian melatonin and temperature taus in delayed sleep-wake phase disorder and non-24-hour sleep-wake rhythm disorder patients: an ultradian constant routine study. J. Biol. Rhythms 31, 387–405 (2016).

    Article  CAS  Google Scholar 

  119. Czeisler, C. A. & Dijk, D. J. in Handbook of Behavioral Neurobiology: Circadian Clocks (eds. Takahashi, J. S., Turek, F. W., & Moore, R. Y.) 531–569 (Plenum, 2001).

  120. Aschoff, J. Circadian rhythms in man: a self-sustained oscillator with an inherent frequency underlies human 24-hour periodicity. Science 148, 1427–1432 (1965).

    Article  CAS  Google Scholar 

  121. Czeisler, C. A., Weitzman, E. D., Moore-Ede, M. C., Zimmerman, J. C. & Knauer, R. S. Human sleep: its duration and organization depend on its circadian phase. Science 210, 1264–1267 (1980).

    Article  CAS  Google Scholar 

  122. Brown, E. N. & Czeisler, C. A. The statistical analysis of circadian phase and amplitude in constant-routine core-temperature data. J. Biol. Rhythms 7, 177–202 (1992).

    Article  CAS  Google Scholar 

  123. Weitzman, E. D., Czeisler, C. A., Zimmerman, J. C., Ronda, J. M. & Knauer, R. S. in Disorders of Sleeping and Waking: Indications and Techniques (ed. Guilleminault, C.) 297–329 (Addison-Wesley, 1982).

  124. Dinges, D. F. & Powell, J. W. Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav. Res. Methods Instrum. Comput. 17, 652–655 (1985).

    Article  Google Scholar 

  125. Enright, J. T. in Circadian Clocks (ed. Aschoff, J.) 112–124 (North-Holland, 1965).

  126. Brown, E. N., Solo, V. & Zhang, Z. in Methods in Enzymology, Numerical Computer Methods Vol. 383 (eds. Brand, L. & Johnson, M. L.) 383–405 (Academic, 2004).

  127. Sargent, C., Darwent, D., Ferguson, S. A., Kennaway, D. J. & Roach, G. D. Sleep restriction masks the influence of the circadian process on sleep propensity. Chronobiol. Int. 29, 565–571 (2012).

    Article  Google Scholar 

  128. Buxton, O. M., Lee, C. W., L’Hermite-Balériaux, M., Turek, F. W. & Van Cauter, E. Exercise elicits phase shifts and acute alterations of melatonin that vary with circadian phase. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R714–R724 (2003).

    Article  CAS  Google Scholar 

  129. Dijk, D. J., Duffy, J. F. & Czeisler, C. A. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. J. Sleep. Res. 1, 112–117 (1992).

    Article  CAS  Google Scholar 

  130. Jewett, M. E. Models of Circadian and Homeostatic Regulation of Human Performance and Alertness. Ph.D. thesis, Harvard University (1997).

  131. Krahn, L. E. et al. Recommended protocols for the Multiple Sleep Latency Test and Maintenance of Wakefulness Test in adults: guidance from the American Academy of Sleep Medicine. J. Clin. Sleep. Med. 17, 2489–2498 (2021).

    Article  Google Scholar 

  132. Fraser, S., Cowen, P., Franklin, M., Franey, C. & Arendt, J. Direct radioimmunoassay for melatonin in plasma. Clin. Chem. 29, 396–397 (1983).

    Article  CAS  Google Scholar 

  133. Yie, S. M., Johansson, E. & Brown, G. M. Competitive solid-phase enzyme immunoassay for melatonin in human and rat serum and rat pineal gland. Clin. Chem. 39, 2322–2325 (1993).

    Article  CAS  Google Scholar 

  134. de Almeida, E. A. et al. Measurement of melatonin in body fluids: standards, protocols and procedures. Childs Nerv. Syst. 27, 879–891 (2011).

    Article  Google Scholar 

  135. Kennaway, D. J. A critical review of melatonin assays: past and present. J. Pineal Res. 67, e12572 (2019).

    Article  Google Scholar 

  136. Laird, N. M. & Ware, J. H. Random-effects models for longitudinal data. Biometrics 38, 963–974 (1982).

    Article  CAS  Google Scholar 

  137. Brown, E. N., Choe, Y., Luithardt, H. & Czeisler, C. A. A statistical model of the human core-temperature circadian rhythm. Am. J. Physiol. Endocrinol. Metab. 279, E669–E683 (2000).

    Article  CAS  Google Scholar 

  138. Rechtschaffen, A. & Kales, A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects (US Government Printing Office, 1968).

  139. Cajochen, C., Wyatt, J. K., Czeisler, C. A., Bonikowska, M. & Dijk, D. J. Non-linear interaction between the circadian and homeostatic modulation of slow eye movements during wakefulness in humans. J. Sleep. Res. 9, 58 (2000).

    Google Scholar 

  140. Wyatt, R. J., Fram, D. H., Kupfer, D. J. & Snyder, F. Total prolonged drug-induced REM sleep suppression in anxious- depressed patients. Arch. Gen. Psychiatry 24, 145–155 (1971).

    Article  CAS  Google Scholar 

  141. Aeschbach, D. et al. Two circadian rhythms in the human electroencephalogram during wakefulness. Am. J. Physiol. 277, R1771–R1779 (1999).

    CAS  Google Scholar 

  142. Smith, M. E., McEvoy, L. K. & Gevins, A. The impact of moderate sleep loss on neurophysiologic signals during working-memory task performance. Sleep 25, 784–794 (2002).

    Article  Google Scholar 

  143. Gillberg, M., Kecklund, G. & Åkerstedt, T. Relations between performance and subjective ratings of sleepiness during a night awake. Sleep 17, 236–241 (1994).

    Article  CAS  Google Scholar 

  144. Kennaway, D. J. Measuring melatonin by immunoassay. J. Pineal Res. 69, e12657 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Drs. J.S. Allan, D.B. Boivin, S.W. Cain, C. Cajochen, A.M. Chang, D. Cohen, S.P. Grady, C. Gronfier, J.T. Hull, M.Y. Münch, D.W. Rimmer, A.W. McHill and K.D. Scheuermaier, each of whom carried out FD studies when they were a trainee in the laboratory. The authors acknowledge Seungyeop Kang for help with R programming. The authors also acknowledge the critical contributions of the late Richard E. Kronauer to the development of the FD protocol and its analyses. The FD studies and data described here were collected in the Environmental Scheduling Facility (ESF) and the Intensive Physiological Monitoring (IPM) Unit at the Brigham and Women’s Hospital. Both facilities were part of the BWH General Clinical Research Center (supported by National Institutes of Health (NIH) Grant M01 RR002635), and the IPM was part of the Harvard Clinical and Translational Science Center (supported by NIH Award UL1 RR025758 and financial contributions from the Brigham and Women’s Hospital and from Harvard University and its affiliated academic health care centers). The development of the FD protocol and NOSA program and carrying out the FD studies described here were supported by NIH Grants P01 AG09975, R01 HL080978, R01 HL52992, R21 AT02571, U01 AG12642 and T32 HL07901; by National Aeronautics and Space Administration Grants NAS9-19435 and NAG 5-3952 and NASA Cooperative Agreement NCC9-58 with the National Space Biomedical Research Institute; and by Air Force Office of Scientific Research Grants F49620-94-1-0398, F49620-95-1-0388, FA9550-06-0080 and F49620-00-1-0266.

Author information

Authors and Affiliations

Authors

Contributions

C.A.C. developed the concept and designed the FD protocol as implemented in our laboratory. J.M.R. designed and built the data-collection hardware and software, the protocol-scheduling software and the data-management system used in our laboratory. E.N.B. designed the statistical model, analysis and computational framework for the NOSA procedure. E.N.B., J.F.M., D.-J.D., and C.A.C. contributed to the implementation of the computational framework for the NOSA procedure. C.A.C., D.-J.D., E.B.K., and M.A.S.H. carried out simulations to determine the impact of light levels on period estimates from FD protocols and free runs. D.-J.D. developed the analyses framework for the separation of circadian and sleep–wake contributions to sleep and performance. R.K.Y., K.-M.Z., J.K.W., F.A.J.L.S., K.P.W., E.B.K., J.F.D. and D.-J.D. carried out FD studies and analyses. W.W. re-analyzed FD data presented here and wrote and updated the NOSA program in R for sharing. W.W., R.K.Y. and K.-M.Z. created figures for the manuscript. All authors contributed to drafting, writing and/or editing the manuscript.

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Competing interests

W.W. serves as a consultant for the National Sleep Foundation. E.B.K. receives support from the Gordon Research Conference, the Sleep Research Society, the Santa Fe Institute and DGSM (German Sleep Society); she has consultancies for Circadian Therapeutics, the National Sleep Foundation, the Puerto Rico Science Technology Trust and Sanofi-Genzyme; her partner owns Chronsulting. C.A.C. reports grants/contracts to BWH from Dayzz Live Well, Ltd., Delta Airlines, FAA, Jazz Pharmaceuticals, NHLBI, NIA, NIOSH, NASA, Puget Sound Pilots, Regeneron Pharmaceuticals/Sanofi and DOD; reports grants/gifts to Monash University from the CDC Foundation, with funding from BNY Mellon, and WHOOP; is/was a paid consultant or received lecture fees from Emory University, Inselspital Bern, UCLA, the Institute of Digital Media and Child Development, the Klarman Family Foundation, the National Council for Mental Wellbeing, the National Sleep Foundation, Physician’s Seal, the SRS Foundation, Tencent Holdings, Teva Pharma Australia, With Deep and Vanda Pharmaceuticals Inc., in which he holds an equity interest; received travel support from the Aspen Brain Institute, the Bloomage International Investment Group, UK Biotechnology and Biological Sciences Research Council, Bouley Botanicals, the Dr. Stanley Ho Medical Development Foundation, EBRS, the German National Academy of Sciences (Leopoldina), the National Safety Council, the National Sleep Foundation, Stanford Medical School, Tencent Holdings and Vanda Pharmaceuticals Inc.; receives research/education support through BWH from Arbor Pharmaceuticals, Avadel Pharmaceuticals, Beijing Zhaode Healthcare Management Consulting Co., Bryte, Alexandra Drane, Eisai, Harmony Biosciences, Jazz Pharmaceuticals, Johnson & Johnson, Mary Ann & Stanley Snider via Combined Jewish Philanthropies, NeuroCare, Inc., Optum, Philips Respironics, Regeneron Pharmaceuticals, Regional Home Care, ResMed, San Francisco Bar Pilots, Sanofi, Schneider, Simmons, Sleep Cycle, Sleep Number, Sysco, Teva Pharmaceuticals Industries and Vanda Pharmaceuticals Inc.; is/was an expert witness in legal cases, including those involving Advanced Power Technologies, Aegis Chemical Solutions LLC, Amtrak, Casper Sleep Inc., C&J Energy Services, Catapult Energy Services Group, Covenant Testing Technologies, the Dallas Police Association, Enterprise Rent-A-Car, Espinal Trucking/Eagle Transport Group/Steel Warehouse Inc., FedEx, Greyhound Lines Inc./Motor Coach Industries/FirstGroup America, PAR Electrical Contractors Inc., Product & Logistics Services LLC/Schlumberger Technology Corp/Gelco Fleet Trust, Puckett Emergency Medical Services LLC, Puget Sound Pilots, Union Pacific Railroad, United Parcel Service and Vanda Pharmaceuticals Inc.; serves as the incumbent of an endowed professorship provided to Harvard University by Cephalon, Inc.; and receives royalties from McGraw Hill and from Philips Respironics for the Actiwatch-2 and Actiwatch Spectrum devices. C.A.C.’s interests were reviewed and are managed by the BWH and MGB in accordance with their conflict of interest policies. D.-J.D. was a paid consultant to F. Hoffmann-La Roche Ltd., Pfizer Inc., Eli Lilly and Company, Novo Nordisk A/S and Ono Pharma UK Ltd. and has received research support from Janssen Research & Development LLC, Eli Lilly and Company and GW Pharma. M.A.S.H. has provided paid limited consulting for The MathWorks, Inc. K.P.W. reports research support/donated materials: DuPont Nutrition & Biosciences, Grain Processing Corporation, and Friesland Campina Innovation Centre and being a consultant to and/or receiving personal fees from Circadian Therapeutics, Inc., Circadian Biotherapies, Inc., Philips, Inc, and U.S. Army Medical Research and Materiel Command - Walter Reed Army Institute of Research, outside the submitted work.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Czeisler, C. A. et al. Science 284, 2177–2181 (1999): https://doi.org/10.1126/science.284.5423.2177

Dijk, D. J. et al. J. Neurosci. 15, 3526–3538 (1995): https://doi.org/10.1523/JNEUROSCI.15-05-03526.1995

Scheer, F. A. et al. PLoS One 2, e721 (2007): https://doi.org/10.1371/journal.pone.0000721

Cohen, D. A. et al. Sci. Transl. Med. 2, 14ra13 (2010): https://doi.org/10.1126/scitranslmed.3000458

Duffy, J. F. et al. Proc. Natl Acad. Sci. USA 108, 15602–15608 (2011): https://doi.org/10.1073/pnas.1010666108

Key data used in this protocol

Dijk, D. J. et al. J. Physiol. 516, 611–627 (1999): https://doi.org/10.1111/j.1469-7793.1999.0611v.x

Duffy, J. F. et al. Proc. Natl Acad. Sci. USA 108, 15602–15608 (2011): https://doi.org/10.1073/pnas.1010666108

Cohen, D. A. et al. Sci. Transl. Med. 2, 14ra13 (2010): https://doi.org/10.1126/scitranslmed.3000458

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Yuan, R.K., Mitchell, J.F. et al. Desynchronizing the sleep­­–wake cycle from circadian timing to assess their separate contributions to physiology and behaviour and to estimate intrinsic circadian period. Nat Protoc 18, 579–603 (2023). https://doi.org/10.1038/s41596-022-00746-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00746-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing