Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Measuring key human carbohydrate digestive enzyme activities using high-performance anion-exchange chromatography with pulsed amperometric detection

Abstract

Carbohydrate digestion in the mammalian gastrointestinal tract is catalyzed by α-amylases and α-glucosidases to produce monosaccharides for absorption. Inhibition of these enzymes is the major activity of the drugs acarbose and miglitol, which are used to manage diabetes. Furthermore, delaying carbohydrate digestion via inhibition of α-amylases and α-glucosidases is an effective strategy to blunt blood glucose spikes, a major risk factor for developing metabolic diseases. Here, we present an in vitro protocol developed to accurately and specifically assess the activity of α-amylases and α-glucosidases, including sucrase, maltase and isomaltase. The assay is especially suitable for measuring inhibition by compounds, drugs and extracts, with minimal interference from impurities or endogenous components, because the substrates and digestive products in the enzyme activity assays are quantified directly by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD). Multiple enzyme sources can be used, but here we present the protocol using commercially available human α-amylase to assess starch hydrolysis with maltoheptaose as the substrate, and with brush border sucrase-isomaltase (with maltase, sucrase and isomaltase activities) derived from differentiated human intestinal Caco-2(/TC7) cells to assess hydrolysis of disaccharides. The wet-lab assay takes ~2–5 h depending on the number of samples, and the HPAE-PAD analysis takes 35 min per sample. A full dataset therefore takes 1–3 d and allows detection of subtle changes in enzyme activity with high sensitivity and reliability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The digestion and absorption of starch and sugars in the gastrointestinal system.
Fig. 2: Schematic outline of Caco-2/TC7 human intestinal cell culture.
Fig. 3: Diagrammatic summary of the entire assay procedure.
Fig. 4: Representative chromatograms of the mixed sugar standards.
Fig. 5: Increasing product formation with increased enzyme or substrate concentrations.
Fig. 6: Acarbose inhibition of enzyme activity.

Similar content being viewed by others

Data availability

The data that support the anticipated results are available on figshare at https://figshare.com/articles/dataset/Barber_et_al_Nature_Protocols_Source_Data_-_Figure_4_xlsx/19709740, https://figshare.com/articles/dataset/Barber_et_al_Nature_Protocols_Source_Data_-_Figure_5_xlsx/19709890 and https://figshare.com/articles/dataset/Barber_et_al_Nature_Protocols_Source_Data_-_Figure_6_xlsx/19709896. Source data are provided with this paper.

References

  1. Robyt, J. in Glycoscience (eds Fraser-Reid, B. O., Tatsuta, K. & Thiem, J.) Ch. 35 (Springer, 2008).

  2. Barber, E., Houghton, M. J. & Williamson, G. Flavonoids as human intestinal α-glucosidase inhibitors. Foods 10, 1939 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rose, D. R., Chaudet, M. M. & Jones, K. Structural studies of the intestinal alpha-glucosidases, maltase-glucoamylase and sucrase-isomaltase. J. Pediatr. Gastroenterol. Nutr. 66, S11–S13 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Lin, A. H., Hamaker, B. R. & Nichols, B. L. Jr. Direct starch digestion by sucrase-isomaltase and maltase-glucoamylase. J. Pediatr. Gastroenterol. Nutr. 55, S43–S45 (2012).

    Article  PubMed  Google Scholar 

  5. Miyake, T., Sakai, S. & Shibuya, T. Process for producing a high-purity isomaltose. US patent 4,521,252 (1981).

  6. Livesey, G. et al. Dietary glycemic index and load and the risk of type 2 diabetes: assessment of causal relations. Nutrients 11, 1436 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McIver, L. A., Preuss, C. V. & Tripp, J. in StatPearls (StatPearls Publishing, 2022); https://www.ncbi.nlm.nih.gov/books/NBK493214/

  8. Aryaeian, N., Sedehi, S. K. & Arablou, T. Polyphenols and their effects on diabetes management: a review. Med. J. Islam. Repub. Iran. 31, 134 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Al-Duhaidahawi, D., Hasan, S. A. & Al-Zubaidy, H. F. S. Flavonoids in the treatment of diabetes clinical outcomes and mechanism to ameliorate blood glucose levels. Curr. Diabetes Rev. 17, e120720188794 (2020).

    Article  Google Scholar 

  10. Priscilla, D. H., Roy, D., Suresh, A., Kumar, V. & Thirumurugan, K. Naringenin inhibits alpha-glucosidase activity: a promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Chem. Biol. Interact. 210, 77–85 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Visvanathan, R., Houghton, M. J. & Williamson, G. Maltoheptaoside hydrolysis with chromatographic detection and starch hydrolysis with reducing sugar analysis: comparison of assays allows assessment of the roles of direct alpha-amylase inhibition and starch complexation. Food Chem. 343, 128423 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Visvanathan, R. et al. Critical review on conventional spectroscopic alpha-amylase activity detection methods: merits, demerits, and future prospects. J. Sci. Food Agric. 100, 2836–2847 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Nyambe-Silavwe, H. et al. Inhibition of human α-amylase by dietary polyphenols. J. Funct. Foods 19, 723–732 (2015).

    Article  CAS  Google Scholar 

  14. Hizukuri, S., Takeda, Y., Yasuda, M. & Suzuki, A. Multi-branched nature of amylose and the action of debranching enzymes. Carbohydr. Res. 94, 205–213 (1981).

    Article  CAS  Google Scholar 

  15. John, M., Schmidt, J. & Kneifel, H. Iodine-maltosaccharide complexes: relation between chain-length and colour. Carbohydr. Res. 119, 254–257 (1983).

    Article  CAS  Google Scholar 

  16. Robyt, J. F. & Whelan, W. J. Reducing value methods for maltodextrins. I. Chain-length dependence of alkaline 3,5-dinitrosalicylate and chain-length independence of alkaline copper. Anal. Biochem. 45, 510–516 (1972).

    Article  CAS  PubMed  Google Scholar 

  17. Teixeira, R. S., da Silva, A. S., Ferreira-Leitao, V. S. & da Silva Bon, E. P. Amino acids interference on the quantification of reducing sugars by the 3,5-dinitrosalicylic acid assay mislead carbohydrase activity measurements. Carbohydr. Res 363, 33–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Cheng, M. W. et al. Different sucrase-isomaltase response of Caco-2 cells to glucose and maltose suggests dietary maltose sensing. J. Clin. Biochem. Nutr. 54, 55–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Pyner, A., Nyambe-Silavwe, H. & Williamson, G. Inhibition of human and rat sucrase and maltase activities to assess antiglycemic potential: optimization of the assay using acarbose and polyphenols. J. Agric. Food Chem. 65, 8643–8651 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Quezada-Calvillo, R. et al. Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch alpha-glucogenesis. J. Nutr. 137, 1725–1733 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Amiri, M. & Naim, H. Y. Characterization of mucosal disaccharidases from human intestine. Nutrients 9, 1106 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Simsek, M., Quezada-Calvillo, R., Ferruzzi, M. G., Nichols, B. L. & Hamaker, B. R. Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release. J. Agric. Food Chem. 63, 3873–3879 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Visvanathan, R. & Williamson, G. Citrus polyphenols and risk of type 2 diabetes: evidence from mechanistic studies. Crit. Rev. Food Sci. Nutr. https://doi.org/10.1080/10408398.2021.1971945 (2021).

    Article  PubMed  Google Scholar 

  24. Da Silva, D. et al. Antidiabetic activity of Sedum dendroideum: metabolic enzymes as putative targets for the bioactive flavonoid kaempferitrin. IUBMB Life 66, 361–370 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Pyner, A., Chan, S. Y., Tumova, S., Kerimi, A. & Williamson, G. Indirect chronic effects of an oleuropein-rich olive leaf extract on sucrase-isomaltase in vitro and in vivo. Nutrients 11, 1505 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lim, J., Zhang, X., Ferruzzi, M. G. & Hamaker, B. R. Starch digested product analysis by HPAEC reveals structural specificity of flavonoids in the inhibition of mammalian alpha-amylase and alpha-glucosidases. Food Chem. 288, 413–421 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Rocklin, R. D. & Pohl, C. Determination of carbohydrates by anion exchange chromatography with pulsed amperometric detection. J. Liq. Chromatogr. 6, 1577–1590 (1983).

    Article  CAS  Google Scholar 

  28. Hardy, M. R., Townsend, R. R. & Lee, Y. C. Monosaccharide analysis of glycoconjugates by anion exchange chromatography with pulsed amperometric detection. Anal. Biochem. 170, 54–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Townsend, R. R., Hardy, M., Olechno, J. D. & Carter, S. R. Chromatography of carbohydrates. Nature 335, 379–380 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Kishino, S. & Miyazaki, K. Separation methods for glycoprotein analysis and preparation. J. Chromatogr. B Biomed. Sci. Appl. 699, 371–381 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Jandik, P., Cheng, J. & Avdalovic, N. Analysis of amino acid-carbohydrate mixtures by anion exchange chromatography and integrated pulsed amperometric detection. J. Biochem. Biophys. Methods 60, 191–203 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. van Leeuwen, S. S. Challenges and pitfalls in human milk oligosaccharide analysis. Nutrients 11, 2684 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cordella, C. B., Militao, J. S., Clement, M. C. & Cabrol-Bass, D. Honey characterization and adulteration detection by pattern recognition applied on HPAEC-PAD profiles. 1. Honey floral species characterization. J. Agric. Food Chem. 51, 3234–3242 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Rohrer, J. S. Vaccine quality ensured by high-performance anion-exchange chromatography with pulsed amperometric detection. SLAS Technol. 25, 320–328 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Tonge, P. J. Quantifying the interactions between biomolecules: guidelines for assay design and data analysis. ACS Infect. Dis. 5, 796–808 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xiao, Z., Storms, R. & Tsang, A. A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities. Anal. Biochem. 351, 146–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Haldar, D., Sen, D. & Gayen, K. Development of spectrophotometric method for the analysis of multi-component carbohydrate mixture of different moieties. Appl. Biochem. Biotechnol. 181, 1416–1434 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Masuko, T. et al. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 339, 69–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. McIntyre, A. P., Mukerjea, R. & Robyt, J. F. Reducing values: dinitrosalicylate gives over-oxidation and invalid results whereas copper bicinchoninate gives no over-oxidation and valid results. Carbohydr. Res. 380, 118–123 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Saqib, A. A. N. & Whitney, P. J. Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono- and di-saccharide sugars. Biomass-. Bioenergy 35, 4748–4750 (2011).

    Article  CAS  Google Scholar 

  41. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  42. Zor, T. & Selinger, S. Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal. Biochem. 236, 302–308 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Bisswanger, H. Enzyme assays. Perspect. Sci. (Neth.) 1, 41–55 (2014).

    Article  Google Scholar 

  44. Sebaugh, J. L. Guidelines for accurate EC50/IC50 estimation. Pharm. Stat. 10, 128–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Holesh, J. E., Aslam, S. & Martin, A. in StatPearls (StatPearls Publishing, 2021); https://www.ncbi.nlm.nih.gov/books/NBK459280/

  46. Lankatillake, C. et al. Screening natural product extracts for potential enzyme inhibitors: protocols, and the standardisation of the usage of blanks in alpha-amylase, alpha-glucosidase and lipase assays. Plant Methods 17, 3 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kellett, G. L., Brot-Laroche, E., Mace, O. J. & Leturque, A. Sugar absorption in the intestine: the role of GLUT2. Annu. Rev. Nutr. 28, 35–54 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Natoli, M., Leoni, B. D., D’Agnano, I., Zucco, F. & Felsani, A. Good Caco-2 cell culture practices. Toxicol. Vitr. 26, 1243–1246 (2012).

    Article  CAS  Google Scholar 

  49. Di, L. & Kerns, E. H. Biological assay challenges from compound solubility: strategies for bioassay optimization. Drug Discov. Today 11, 446–451 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Kerimi for setting up the preceding methods on the Integrion and help in translocating polyphenols and equipment to the laboratory, and E. Balland for help in setting up a functional laboratory at Monash University. The Caco2/TC7 cell line was a kind gift from M. Rousset, Centre de Recherche des Cordeliers, Paris, France.

Author information

Authors and Affiliations

Authors

Contributions

E.B. had the initial idea to publish the methods as a protocol. E.B., R.V. and M.J.H. established and improved the α-glucosidase and α-amylase enzyme assays, and generated data. G.W. designed and supervised the research and oversaw the development of the protocols. All authors edited the manuscript and approved the final version.

Corresponding author

Correspondence to Gary Williamson.

Ethics declarations

Competing interests

G.W. is a scientific advisor for Nutrilite, USA, and receives research funding from Nutrilite, USA, and TPM, Australia. The other authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Kiyoshi Yasukawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Barber, E. et al. Foods 10, 1939 (2021): https://doi.org/10.3390/foods10081939

Visvanathan, R. et al. Food Chem. 343, 128423 (2021): https://doi.org/10.1016/j.foodchem.2020.128423

Key data used in this protocol

Barber, E. et al. Foods 10, 1939 (2021): https://doi.org/10.3390/foods10081939

Visvanathan, R. et al. Food Chem. 343, 128423 (2021): https://doi.org/10.1016/j.foodchem.2020.128423

Supplementary information

Supplementary Table 1

Example raw data for α-glucosidase assay, quantified by HPAE-PAD in triplicate injections.

Source data

Source Data Fig. 4

Raw and processed source HPAE-PAD data.

Source Data Fig. 5

Raw and processed source HPAE-PAD data.

Source Data Fig. 6

Raw and processed source HPAE-PAD data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barber, E., Houghton, M.J., Visvanathan, R. et al. Measuring key human carbohydrate digestive enzyme activities using high-performance anion-exchange chromatography with pulsed amperometric detection. Nat Protoc 17, 2882–2919 (2022). https://doi.org/10.1038/s41596-022-00736-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00736-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research