Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A rapid screening platform to coculture bacteria within tumor spheroids

Abstract

The prevalence of tumor-colonizing bacteria along with advances in synthetic biology are leading to a new generation of living microbial cancer therapies. Because many bacterial systems can be engineered to recombinantly produce therapeutics within tumors, simple and high-throughput experimental platforms are needed to screen the large collections of bacteria candidates and characterize their interactions with cancer cells. Here, we describe a protocol to selectively grow bacteria within the core of tumor spheroids, allowing for their continuous and parallel profiling in physiologically relevant conditions. Specifically, tumor spheroids are incubated with bacteria in a 96-well low-adhesion plate followed by a series of washing steps and an antibiotic selection protocol to confine bacterial growth within the hypoxic and necrotic core of tumor spheroids. This bacteria spheroid coculture (BSCC) system is stable for over 2 weeks, does not require specialized equipment and is compatible with time-lapse microscopy, commercial staining assays and histology that uniquely enable analysis of growth kinetics, viability and spatial distribution of both cellular populations, respectively. We show that the procedure is applicable to multiple tumor cell types and bacterial species by varying protocol parameters and is validated by using animal models. The BSCC platform will allow the study of bacteria–tumor interactions in a continuous manner and facilitate the rapid development of engineered microbial therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BSCC system to evaluate microbial cancer interactions and therapies.
Fig. 2: Schematic workflow to establish BSCC.
Fig. 3: Overview of the downstream assays and their utilities.
Fig. 4: Coculture with various bacteria and tumor cell types.
Fig. 5: Characterization of bacteria and tumor spheroids in coculture.
Fig. 6: Gene circuit performance in tumor spheroids.
Fig. 7: Therapeutic screening and validation.

Similar content being viewed by others

Data availability

The main data discussed in this protocol were generated as part of the studies published in the supporting primary research papers20,21. Source data are provided for Figs. 47. Source data are provided with this paper.

Code availability

The computational code used for image analysis is provided in Supplementary Information.

References

  1. Sepich-Poore, G. D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhou, S., Gravekamp, C., Bermudes, D. & Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 18, 727–743 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harimoto, T. & Danino, T. Engineering bacteria for cancer therapy. Emerg. Top. Life Sci. 3, 623–629 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chien, T., Doshi, A. & Danino, T. Advances in bacterial cancer therapies using synthetic biology. Curr. Opin. Syst. Biol. 5, 1–8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bullman, S. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Uemura, N. et al. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 345, 784–789 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Kalaora, S. et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 592, 138–143 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 580, 269–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lehouritis, P., Springer, C. & Tangney, M. Bacterial-directed enzyme prodrug therapy. J. Control. Release 170, 120–131 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Isabella, V. M. et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36, 857–864 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Flickinger, J. C. Jr., Rodeck, U. & Snook, A. E. Listeria monocytogenes as a vector for cancer immunotherapy: current understanding and progress. Vaccines (Basel) 6, 48 (2018).

    Article  CAS  Google Scholar 

  14. Toso, J. F. et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20, 142–152 (2002).

    Article  PubMed  Google Scholar 

  15. Roberts, N. J. et al. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Sci. Transl. Med. 6, 249ra111 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nemunaitis, J. et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 10, 737–744 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Helmink, B. A., Khan, M. A. W., Hermann, A., Gopalakrishnan, V. & Wargo, J. A. The microbiome, cancer, and cancer therapy. Nat. Med. 25, 377–388 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Riglar, D. T. & Silver, P. A. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol. 16, 214–225 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Forbes, N. S. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10, 785–794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harimoto, T. et al. Rapid screening of engineered microbial therapies in a 3D multicellular model. Proc. Natl Acad. Sci. USA 116, 9002–9007 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chien, T. et al. Enhancing the tropism of bacteria via genetically programmed biosensors. Nat. Biomed. Eng. 6, 94–104 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Zuniga, A. et al. Engineered L-lactate responding promoter system operating in glucose-rich and anoxic environments. ACS Synth. Biol. 10, 3527–3536 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kasper, S. H. et al. Colorectal cancer-associated anaerobic bacteria proliferate in tumor spheroids and alter the microenvironment. Sci. Rep. 10, 5321 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yano, S. et al. Tumor-targeting Salmonella typhimurium A1-R decoys quiescent cancer cells to cycle as visualized by FUCCI imaging and become sensitive to chemotherapy. Cell Cycle 13, 3958–3963 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao, S. et al. Development of oxytolerant Salmonella typhimurium using radiation mutation technology (RMT) for cancer therapy. Sci. Rep. 10, 3764 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sadaghian Sadabad, M. et al. A simple coculture system shows mutualism between anaerobic faecalibacteria and epithelial Caco-2 cells. Sci. Rep. 5, 17906 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng, D. W. et al. Optically-controlled bacterial metabolite for cancer therapy. Nat. Commun. 9, 1680 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang, S. B. et al. Bacteria-assisted selective photothermal therapy for precise tumor inhibition. Adv. Funct. Mater. 29, 1904093 (2019).

    Article  Google Scholar 

  29. Wang, X. N., Niu, M. T., Fan, J. X., Chen, Q. W. & Zhang, X. Z. Photoelectric bacteria enhance the in situ production of tetrodotoxin for antitumor therapy. Nano Lett. 21, 4270–4279 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Song, J. et al. A microfluidic device for studying chemotaxis mechanism of bacterial cancer targeting. Sci. Rep. 8, 6394 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hong, J. W., Song, S. & Shin, J. H. A novel microfluidic co-culture system for investigation of bacterial cancer targeting. Lab Chip 13, 3033–3040 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Din, M. O. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536, 81–85 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, W., Mao, S., He, Z., Wu, Z. & Lin, J. M. In situ monitoring of fluid shear stress enhanced adherence of bacteria to cancer cells on microfluidic chip. Anal. Chem. 91, 5973–5979 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Mokrani, N. et al. Magnetotactic bacteria penetration into multicellular tumor spheroids for targeted therapy. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2010, 4371–4374 (2010).

    PubMed  Google Scholar 

  35. Suh, S. et al. Nanoscale bacteria-enabled autonomous drug delivery system (NanoBEADS) enhances intratumoral transport of nanomedicine. Adv. Sci. (Weinh.) 6, 1801309 (2019).

    Google Scholar 

  36. Kasinskas, R. W. & Forbes, N. S. Salmonella typhimurium specifically chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnol. Bioeng. 94, 710–721 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Deng, Y., Liu, S. Y., Chua, S. L. & Khoo, B. L. The effects of biofilms on tumor progression in a 3D cancer-biofilm microfluidic model. Biosens. Bioelectron. 180, 113113 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Brackett, E. L., Swofford, C. A. & Forbes, N. S. Microfluidic device to quantify the behavior of therapeutic bacteria in three-dimensional tumor tissue. Methods Mol. Biol. 1409, 35–48 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Goers, L., Freemont, P. & Polizzi, K. M. Co-culture systems and technologies: taking synthetic biology to the next level. J. R. Soc. Interface 11, 20140065 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Swofford, C. A., St Jean, A. T., Panteli, J. T., Brentzel, Z. J. & Forbes, N. S. Identification of Staphylococcus aureus α-hemolysin as a protein drug that is secreted by anticancer bacteria and rapidly kills cancer cells. Biotechnol. Bioeng. 111, 1233–1245 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yu, B. et al. Explicit hypoxia targeting with tumor suppression by creating an “obligate” anaerobic Salmonella Typhimurium strain. Sci. Rep. 2, 436 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ryan, R. M. et al. Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther. 16, 329–339 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Friedrich, J., Seidel, C., Ebner, R. & Kunz-Schughart, L. A. Spheroid-based drug screen: considerations and practical approach. Nat. Protoc. 4, 309–324 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Fong, E. L., Harrington, D. A., Farach-Carson, M. C. & Yu, H. Heralding a new paradigm in 3D tumor modeling. Biomaterials 108, 197–213 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Osswald, A. et al. Three-dimensional tumor spheroids for in vitro analysis of bacteria as gene delivery vectors in tumor therapy. Microb. Cell Fact. 14, 199 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bhave, M. S., Hassanbhai, A. M., Anand, P., Luo, K. Q. & Teoh, S. H. Effect of heat-inactivated Clostridium sporogenes and its conditioned media on 3-dimensional colorectal cancer cell models. Sci. Rep. 5, 15681 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Co, J. Y., Margalef-Catala, M., Monack, D. M. & Amieva, M. R. Controlling the polarity of human gastrointestinal organoids to investigate epithelial biology and infectious diseases. Nat. Protoc. 16, 5171–5192 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, J. et al. Coculture of primary human colon monolayer with human gut bacteria. Nat. Protoc. 16, 3874–3900 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aguilar, C. et al. Organoids as host models for infection biology—a review of methods. Exp. Mol. Med. 53, 1471–1482 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Danino, T., Lo, J., Prindle, A., Hasty, J. & Bhatia, S. N. In vivo gene expression dynamics of tumor-targeted bacteria. ACS Synth. Biol. 1, 465–470 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Canale, F. P. et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 598, 662–666 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Doi, Y., Wachino, J. I. & Arakawa, Y. Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases. Infect. Dis. Clin. North Am. 30, 523–537 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Codini, M. et al. Gentamicin arrests cancer cell growth: the intriguing involvement of nuclear sphingomyelin metabolism. Int. J. Mol. Sci. 16, 2307–2319 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, C. H., Wu, C. L. & Shiau, A. L. Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models. J. Gene Med. 6, 1382–1393 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Yu, B. et al. Obligate anaerobic Salmonella typhimurium strain YB1 treatment on xenograft tumor in immunocompetent mouse model. Oncol. Lett. 10, 1069–1074 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Danino, T. et al. Programmable probiotics for detection of cancer in urine. Sci. Transl. Med. 7, 289ra284 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Herbert Irving Comprehensive Cancer Center Molecular Pathology Shared Resources Facility for help with histological sample processing. We thank W. Mather for assistance with the image analysis. We thank members of the Danino laboratory for reviewing the manuscript. This work was supported by the DoD LC160314 (T.D.), DoD BC160541 (T.D.), NIH 1R01EB029750 (T.D.), NIH F99CA253756 (T.H.) and Honjo International Foundation Scholarship (T.H.).

Author information

Authors and Affiliations

Authors

Contributions

T.H. and T.D. conceived and designed the study. T.H., D.D. and T.D. wrote the manuscript.

Corresponding author

Correspondence to Tal Danino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Jun Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Harimoto, T. et al. Proc. Natl. Acad. Sci. USA 116, 9002–9007 (2019): https://doi.org/10.1073/pnas.1820824116

Chien, T. et al. Nat. Biomed. Eng. 6, 94–104 (2022): https://doi.org/10.1038/s41551-021-00772-3

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and computational code for image analysis

Source data

Source Data Fig. 4

Statistical source data

Source Data Fig. 5

Statistical source data

Source Data Fig. 6

Statistical source data

Source Data Fig. 7

Statistical source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harimoto, T., Deb, D. & Danino, T. A rapid screening platform to coculture bacteria within tumor spheroids. Nat Protoc 17, 2216–2239 (2022). https://doi.org/10.1038/s41596-022-00723-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00723-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer