Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synthesis of cyclodextrin derivatives for enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate

Abstract

Photochemical methods are increasingly being used in organic synthesis. They are especially useful for preparing many compounds that are not readily accessible through thermal or enzymatic reactions. The supramolecular strategy has proved highly promising in recent years for manipulating the stereochemical outcome of chiral photoreactions through relatively strong and long-lasting noncovalent interactions in both ground and excited states. Among the numerous chiral photochemical reactions, photocyclodimerization of 2-anthracenecarboxylate (AC) is the most comprehensively studied supramolecular chiral photoreaction and has essentially become a benchmark reaction for evaluating supramolecular photochirogenesis. Cyclodextrin (CD) derivatives were the earliest and are the most widely applied chiral host for mediating photoreactions. Herein, we use CD-mediated photocyclodimerization of AC as an example to introduce the operation process of supramolecular chiral photoreactions. The protocol includes the following contents: (i) the preparation, purification and characterization of β-CD derivatives; (ii) methods for investigating the host–guest inclusion behavior between AC and β-CD derivatives; (iii) the photochemical reaction operation flow under different solvent and temperature conditions; (iv) chiral high-performance liquid chromatography (HPLC) analyses of the product distribution and enantioselectivity. The protocol is introduced by using representative examples of the synthesis of β-CD derivatives and the manipulation of environmental factors that give excellent regio- and enantioselectivities in the photocyclodimerization of AC. The synthesis and purification of β-CD derivatives require 3–5 d of work. The photoirradiation of AC with β-CD derivatives can be done within 1 h. The product analysis requires 5 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photocyclodimerization of AC Mediated by β-CD.
Fig. 2: Instrumental setups for photocyclodimerization of AC mediated by β-CD derivatives.
Fig. 3: Examples.
Fig. 4: Synthesis of cationic β-CDs and sulfur-bridged β-CD dimers.
Fig. 5: Chromatography setup.
Fig. 6: UV-visible spectral titration of AC with 10.
Fig. 7: Photoreaction setup.
Fig. 8: HPLC chromatograms.
Fig. 9: Degassing setup.
Fig. 10: UV-visible spectral changes of AC upon irradiation.
Fig. 11: Manipulation of photocyclodimerization of AC by changing the reaction environment.

Similar content being viewed by others

Data availability

All relevant data for this protocol can be found in the text and Supplementary Information of this manuscript and/or its supporting primary research papers.

References

  1. Rau, H. Asymmetric photochemistry in solution. Chem. Rev. 83, 535–547 (1983).

    CAS  Google Scholar 

  2. Inoue, Y. Asymmetric photochemical reactions in solution. Chem. Rev. 92, 741–770 (1992).

    CAS  Google Scholar 

  3. Griesbeck, A. G. & Meierhenrich, U. J. Asymmetric photochemistry and photochirogenesis. Angew. Chem. Int. Ed. 41, 3147–3154 (2002).

    Google Scholar 

  4. Inoue, Y. & Ramamurthy, V. (eds.) Chiral Photochemistry (CRC Press, 2004).

  5. Yang, C. & Inoue, Y. Supramolecular photochirogenesis. in Supramolecular Photochemistry (eds Ramamurthy, V. & Inoue, Y.) 4.115–4.153 (Wiley, 2011).

  6. Yang, C. Recent progress in supramolecular chiral photochemistry. Chin. Chem. Lett. 24, 437–441 (2013).

    Google Scholar 

  7. Yang, C. & Inoue, Y. Supramolecular photochirogenesis. Chem. Soc. Rev. 43, 4123–4143 (2014).

    CAS  PubMed  Google Scholar 

  8. Ramamurthy, V. & Gupta, S. Supramolecular photochemistry: from molecular crystals to water-soluble capsules. Chem. Soc. Rev. 44, 119–135 (2015).

    CAS  PubMed  Google Scholar 

  9. Morimoto, M. et al. Advances in supramolecular host-mediated reactivity. Nat. Catal. 3, 969–984 (2020).

    CAS  Google Scholar 

  10. Yao, J. et al. Ammonia-driven chirality inversion and enhancement in enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate mediated by diguanidino-γ-cyclodextrin. J. Am. Chem. Soc. 136, 6916–6919 (2014).

    CAS  PubMed  Google Scholar 

  11. Rao, M. et al. Photocatalytic supramolecular enantiodifferentiating dimerization of 2-anthracenecarboxylic acid through triplet–triplet annihilation. Org. Lett. 20, 1680–1683 (2018).

    CAS  PubMed  Google Scholar 

  12. Wei, X. et al. Supramolecular photochirogenesis driven by higher-order complexation: enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate to slipped cyclodimers via a 2:2 complex with β-cyclodextrin. J. Am. Chem. Soc. 140, 3959–3974 (2018).

    CAS  PubMed  Google Scholar 

  13. Ji, J. et al. An ultimate stereocontrol in supramolecular photochirogenesis: Photocyclodimerization of 2-anthracenecarboxylate mediated by sulfur-linked β-cyclodextrin dimers. J. Am. Chem. Soc. 141, 9225–9238 (2019).

    PubMed  Google Scholar 

  14. Wang, Q. et al. A supramolecular strategy for enhancing photochirogenic performance through host/guest modification: dicationic γ-cyclodextrin-mediated photocyclodimerization of 2,6-anthracenedicarboxylate. Org. Lett. 14, 9757–9761 (2020).

    Google Scholar 

  15. Kanagaraj, K. et al. pH-controlled chirality inversion in enantiodifferentiating photocyclodimerization of 2-antharacenecarboxylic acid mediated by γ-cyclodextrin derivatives. Org. Lett. 22, 5273–5278 (2020).

    CAS  PubMed  Google Scholar 

  16. Luo, L. et al. Cyclodextrin-directed enantioselective photocyclodimerization of methyl 3-methoxyl-2-naphthoate. J. Org. Chem. 74, 3506–3515 (2009).

    CAS  PubMed  Google Scholar 

  17. Brimioulle, R. & Bach, T. Enantioselective lewis acid catalysis of intramolecular enone [2 + 2] photocycloaddition reactions. Science 342, 840–843 (2013).

    CAS  PubMed  Google Scholar 

  18. Coote, S. C. & Bach, T. Enantioselective intermolecular [2 + 2] photocycloadditions of isoquinolone mediated by a chiral hydrogen-bonding template. J. Am. Chem. Soc. 135, 14948–14951 (2013).

    CAS  PubMed  Google Scholar 

  19. Kawanami, Y. et al. Supramolecular photochirogenesis with a higher-order complex: Highly accelerated exclusively head-to-head photocyclodimerization of 2-anthracenecarboxylic acid via 2:2 complexation with prolinol. J. Am. Chem. Soc. 138, 12187–12201 (2016).

    CAS  PubMed  Google Scholar 

  20. Skubi, K. L. et al. Enantioselective excited-state photoreactions controlled by a chiral hydrogen-bonding iridium sensitizer. J. Am. Chem. Soc. 139, 17186–17192 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bach, T., Bergmann, H. & Harms, K. Enantioselective intramolecular [2 + 2]-photocycloaddition reactions in solution. Angew. Chem. Int. Ed. 39, 2302–2304 (2000).

    CAS  Google Scholar 

  22. Jon, S. Y. et al. A facile, stereoselective [2 + 2] photoreaction mediated by cucurbit [8] uril. Chem. Commun. 1938–1939 (2001).

  23. Pattabiraman, M., Sivaguru, J. & Ramamurthy, V. Cucurbiturils as reaction containers for photocycloaddition of olefins. Isr. J. Chem. 58, 264–275 (2018).

    CAS  Google Scholar 

  24. Barrow, S. J. et al. Cucurbituril-based molecular recognition. Chem. Rev. 115, 12320–12406 (2015).

    CAS  PubMed  Google Scholar 

  25. Maddipatla, M. V. S. N. et al. Preorientation of olefins toward a single photodimer: cucurbituril-mediated photodimerization of protonated azastilbenes in water. Langmuir 23, 7545–7554 (2007).

    CAS  PubMed  Google Scholar 

  26. Tanabe, J., Taura, D., Ousaka, N. & Yashima, E. Chiral template-directed regio-, diastereo-, and enantioselective photodimerization of an anthracene derivative assisted by complementary amidinium–carboxylate salt bridge formation. J. Am. Chem. Soc. 139, 7388–7398 (2017).

    CAS  PubMed  Google Scholar 

  27. Urushima, A. et al. Enantiodifferentiating photodimerization of a 2,6-disubstituted anthracene assisted by supramolecular double-helix formation with chiral amines. Angew. Chem. Int. Ed. 59, 7478–7486 (2020).

    CAS  Google Scholar 

  28. Wei, X. et al. Reversal of regioselectivity during photodimerization of 2-anthracenecarboxylic acid in a water-soluble organic cavitand. Org. Lett. 21, 7868–7872 (2019).

    CAS  PubMed  Google Scholar 

  29. Yoshizawa, M., Tamura, M. & Fujita, M. Diels–Alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis. Science 312, 251–254 (2006).

    CAS  PubMed  Google Scholar 

  30. Nishioka, Y., Yamaguchi, T., Kawano, M. & Fujita, M. Asymmetric [2 + 2] olefin cross photoaddition in a self-assembled host with remote chiral auxiliaries. J. Am. Chem. Soc. 130, 8160–8161 (2008).

    CAS  PubMed  Google Scholar 

  31. Alagesan, M. et al. Enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate mediated by a self-assembled iron tetrahedral coordination cage. J. Photochem. Photobiol. A 331, 95–101 (2016).

    CAS  Google Scholar 

  32. Breslow, R. & Dong, S. D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 98, 1997–2012 (1998).

    CAS  PubMed  Google Scholar 

  33. Crini, G. Review: a history of cyclodextrins. Chem. Rev. 114, 10940–10975 (2014).

    CAS  PubMed  Google Scholar 

  34. Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998).

    CAS  PubMed  Google Scholar 

  35. Rekharsky, M. V. & Inoue, Y. Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1918 (1998).

    CAS  PubMed  Google Scholar 

  36. Hanessian, S., Benalil, A. & Laferriere, C. The synthesis of functionalized cyclodextrins as scaffolds and templates for molecular diversity, catalysis, and inclusion phenomena. J. Org. Chem. 60, 4786–4797 (1995).

    CAS  Google Scholar 

  37. Fukuhara, G. et al. Supramolecular photocyclodimerization of 2-hydroxyanthracene with a chiral hydrogen-bonding template, cyclodextrin and serum albumin. Photochem. Photobiol. Sci. 13, 162–171 (2014).

    CAS  PubMed  Google Scholar 

  38. Rao, V. P. & Turro, N. J. Asymmetric induction in benzoin by photolysis of benzaldehyde adsorbed in cyclodextrin cavities. Tetrahedron Lett. 30, 4641–4644 (1989).

    CAS  Google Scholar 

  39. Inoue, Y. et al. Inclusion-enhanced optical yield and E/Z ratio in enantiodifferentiating photoisomerization of cyclooctene included and sensitized by β-cyclodextrin monobenzoate. J. Am. Chem. Soc. 117, 11033–11034 (1995).

    CAS  Google Scholar 

  40. Fukuhara, G., Mori, T., Wada, T. & Inoue, Y. Entropy-controlled supramolecular photochirogenesis: enantiodifferentiating Z–E photoisomerization of cyclooctene included and sensitized by permethylated 6-O-benzoyl-β-cyclodextrin. Chem. Commun. 4199–4201 (2005).

  41. Lu, R. et al. Supramolecular enantiodifferentiating photoisomerization of cyclooctene with modified beta-cyclodextrins: critical control by a host structure. Chem. Commun. 374–376 (2008).

  42. Nakamura, A. & Inoue, Y. Supramolecular catalysis of the enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate by γ-cyclodextrin. J. Am. Chem. Soc. 125, 966–972 (2003).

    CAS  PubMed  Google Scholar 

  43. Nakamura, A. & Inoue, Y. Electrostatic manipulation of enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate within γ-cyclodextrin cavity through chemical modification. Inverted product distribution and enhanced enantioselectivity. J. Am. Chem. Soc. 127, 5338–5339 (2005).

    CAS  PubMed  Google Scholar 

  44. Yang, C. et al. Highly Stereoselective photocyclodimerization of α-cyclodextrin-appended anthracene mediated by γ-cyclodextrin and cucurbit[8]uril: a dramatic steric effect operating outside the binding site. J. Am. Chem. Soc. 130, 8574–8575 (2008).

    CAS  PubMed  Google Scholar 

  45. Yang, C. et al. Dual supramolecular photochirogenesis: ultimate stereocontrol of photocyclodimerization by a chiral scaffold and confining host. J. Am. Chem. Soc. 133, 13786–13789 (2011).

    CAS  PubMed  Google Scholar 

  46. Koodanjeri, S., Joy, A. & Ramamurthy, V. Asymmetric induction with cyclodextrins: photocyclization of tropolone alkyl ethers. Tetrahedron 56, 7003–7009 (2000).

    CAS  Google Scholar 

  47. Shailaja, J., Karthikeyan, S. & Ramamurthy, V. Cyclodextrin mediated solvent-free enantioselective photocyclization of N-alkyl pyridones. Tetrahedron Lett. 43, 9335–9339 (2002).

    CAS  Google Scholar 

  48. Koodanjeri, S. & Ramamurthy, V. Cyclodextrin mediated enantio and diastereoselective geometric photoisomerization of diphenylcyclopropane and its derivatives. Tetrahedron Lett. 43, 9229–9232 (2002).

    CAS  Google Scholar 

  49. Wada, T. et al. Bovine serum albumin-mediated enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate. J. Am. Chem. Soc. 125, 7492–7493 (2003).

    CAS  PubMed  Google Scholar 

  50. Fuentealba, D. et al. Explaining the highly enantiomeric photocyclodimerization of 2-anthracenecarboxylate bound to human serum albumin using time-resolved anisotropy studies. J. Am. Chem. Soc. 135, 203–209 (2013).

    CAS  PubMed  Google Scholar 

  51. Nishijima, M. et al. Photochirogenesis with mutant human serum albumins: enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate. Chem. Commun. 49, 7433–7435 (2013).

    CAS  Google Scholar 

  52. Ishida, Y. et al. Two-component liquid crystals as chiral reaction media: highly enantioselective photodimerization of an anthracene derivative driven by the ordered microenvironment. Angew. Chem. Int. Ed. 47, 8241–8245 (2008).

    CAS  Google Scholar 

  53. Ishida, Y. et al. Metastable liquid crystal as time-responsive reaction medium: aging-induced dual enantioselective control. J. Am. Chem. Soc. 135, 6407–6410 (2013).

    CAS  PubMed  Google Scholar 

  54. Wei, X. et al. Enantioselective photoinduced cyclodimerization of a prochiral anthracene derivative adsorbed on helical metal nanostructures. Nat. Chem. 12, 551–559 (2020).

    CAS  PubMed  Google Scholar 

  55. Chen, X.-Y. et al. Selective photodimerization in a cyclodextrin metal–organic framework. J. Am. Chem. Soc. 143, 9129–9139 (2021).

    CAS  PubMed  Google Scholar 

  56. Tamaki, T., Kokubu, T. & Ichimura, K. Regio- and stereoselective photodimerization of anthracene derivatives included by cyclodextrins. Tetrahedron 43, 1485–1494 (1987).

    CAS  Google Scholar 

  57. Yang, C. et al. Pressure and temperature-controlled enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate mediated by secondary face- and skeleton-modified gamma-cyclodextrins. J. Org. Chem. 71, 3126–3136 (2006).

    CAS  PubMed  Google Scholar 

  58. Yang, C., Mori, T. & Inoue, Y. Supramolecular enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate mediated by capped γ-cyclodextrins: critical control of enantioselectivity by cap rigidity. J. Org. Chem. 73, 5786–5794 (2008).

    CAS  PubMed  Google Scholar 

  59. Ke, C. et al. Catalytic enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by a non-sensitizing chiral metallosupramolecular host. Angew. Chem. Int. Ed. 48, 6675–6677 (2009).

    CAS  Google Scholar 

  60. Yang, C. et al. Enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by γ-cyclodextrins with a flexible or rigid cap. Org. Lett. 8, 3005–3008 (2006).

    CAS  PubMed  Google Scholar 

  61. Vallavoju, N. & Sivaguru, J. Supramolecular photocatalysis: combining confinement and non-covalent interactions to control light initiated reactions. Chem. Soc. Rev. 43, 4084–4101 (2014).

    CAS  PubMed  Google Scholar 

  62. Welborn, V. V. & Head-Gordon, T. Electrostatics generated by a supramolecular capsule stabilizes the transition state for carbon–carbon reductive elimination from gold(III) complex. J. Phys. Chem. Lett. 9, 3814–3818 (2018).

    Google Scholar 

  63. Young, T. A. et al. Rationalizing the activity of an “artificial diels-alderase”: establishing efficient and accurate protocols for calculating supramolecular catalysis. J. Am. Chem. Soc. 142, 1300–1310 (2020).

    PubMed  Google Scholar 

  64. Petroselli, M. et al. Radical reactions in cavitands unveil the effects of affinity on dynamic supramolecular systems. J. Am. Chem. Soc. 142, 2396–2403 (2020).

    CAS  PubMed  Google Scholar 

  65. Wei, X. et al. Enhanced irregular photodimers and switched enantioselectivity by solvent and temperature in the photocyclodimerization of 2-anthracenecarboxylate with modified β-cyclodextrins. J. Photochem. Photobiol. A 371, 374–381 (2019).

    CAS  Google Scholar 

  66. Nishijima, M. et al. High-sensitivity HPLC quantification of nonfluorescent but photolabile analyte through photoreversion in fluorescence detector. Chem. Lett. 39, 726–727 (2009).

    Google Scholar 

  67. Bouas-Laurent, H. et al. Photodimerization of anthracenes in fluid solution: structural aspects. Chem. Soc. Rev. 29, 43–55 (2000).

    CAS  Google Scholar 

  68. Bouas-Laurent, H. et al. Photodimerization of anthracenes in fluid solutions: (part 2) mechanistic aspects of the photocycloaddition and of the photochemical and thermal cleavage. Chem. Soc. Rev. 30, 248–263 (2001).

    CAS  Google Scholar 

  69. Wang, Q. et al. Wavelength-controlled supramolecular photocyclodimerization of anthracenecarboxylate mediated by γ-cyclodextrins. Chem. Commun. 47, 6849–6851 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of this work by the National Key Research and Development Program of China (2017YFA0505903), the National Natural Science Foundation of China (92056116, 22001046, 21871194, 21971169 and 21572142), the Fundamental Research Funds for the Central Universities (20826041D4117), the Comprehensive Training Platform of Specialized Laboratory (College of Chemistry, Sichuan University), the Department of Education, Science and Technology of Guangxi Zhuang Autonomous Region (2020KY03008, 2020AC19233 and 2021JJB120031) and the Youth Science Foundation of Guangxi Medical University (GXMUYSF201904).

Author information

Authors and Affiliations

Authors

Contributions

C.Y. and W.W. designed the experiments and supervised the project. X.W. and J.J. contributed equally to this work. They designed and performed the experiments. Y.N. and L.T. performed some of the experiments. M.R., X.W., D.S. and Z.Z. composed the manuscript. All the authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Wanhua Wu or Cheng Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Axel Griesbeck, Yoshihisa Inoue and Yasuhiro Ishida for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related Links

Key references using this protocol

Wei, X. et al. J. Am. Chem. Soc. 140, 3959–3974 (2018): https://doi.org/10.1021/jacs.7b12085

Ji, J. et al. J. Am. Chem. Soc. 141, 9225–9238 (2019): https://doi.org/10.1021/jacs.9b01993

Key data used in this protocol

Ji, J. et al. J. Am. Chem. Soc. 141, 9225–9238 (2019): https://doi.org/10.1021/jacs.9b01993

Extended data

Extended Data Fig. 1 Glassware setup for synthesis of 11 and 12.

a,b, Photographs of the state of the pyridine solution containing 100 mM β-CD before (a) and after the addition of p-toluenesulfonyl chloride dissolved in pyridine for 4 h (b). The reaction mixture was vigorously stirred under Ar protection with an inflated Ar balloon.

Extended Data Fig. 2 Glassware setup and TLC example for synthesis of 13 and 14.

a, Glassware setup for synthesis of 6A,6C-diiodo-β-CD 13 or 6A,6D-diiodo-β-CD 14. b, Iodination for 6A,6C-di-O-tosyl-β-CD 11 monitored by TLC (the TLC Rf values of 6A,6X-di-O-tosyl-β-CD and 6A,6X-diiodo-β-CD are 0.6 and 0.5, respectively, using isopropanol/EtOAc/H2O/NH3∙H2O (5:2:3:1 (vol/vol/vol/vol) as eluent).

Extended Data Fig. 3 Glassware setup.

Glassware setup for synthesis of 6A,6C-TMA2-β-CD 7 or 6A,6D-TMA2-β-CD 8.

Supplementary information

Supplementary Information

Supplementary Figs. 1–33.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Ji, J., Nie, Y. et al. Synthesis of cyclodextrin derivatives for enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate. Nat Protoc 17, 2494–2516 (2022). https://doi.org/10.1038/s41596-022-00722-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00722-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing