Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Extension
  • Published:

Selective footprinting of 40S and 80S ribosome subpopulations (Sel-TCP-seq) to study translation and its control

Abstract

Multiple aspects of mRNA translation are subject to regulation. Here we present a ribosome footprinting protocol to determine the location and composition of 40S and 80S ribosome complexes on endogenous mRNAs transcriptome-wide in vivo in yeast and mammalian cells. We present an extension of the translation complex profiling (TCP-seq) protocol, originally developed in yeast, by including an immunoprecipitation step to assay the location of both 40S and 80S ribosome complexes containing proteins of interest. This yields information on where along mRNAs the ribosome-bound protein of interest joins the ribosome to act, and where it leaves again, thereby monitoring the sequential steps of translation and the roles of various translation factors therein. Rapid fixation of live cells ensures the integrity of all translation complexes bound to mRNA at native positions. Two procedures are described, differing mainly in the fixation conditions and the library preparation. Depending on the research question, either procedure offers advantages. Execution of a Sel-TCP-seq experiment takes 5–10 working days, and initial data analysis can be completed within 2 days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic experimental workflow and expected results of selective footprinting of 40S and 80S ribosome subpopulations (Sel-TCP-seq).
Fig. 2: Experimental workflow for cultured mammalian cells highlighting the main differences between the DSP and the HCHO-only procedures.
Fig. 3: Useful representation of the data.
Fig. 4: Representative gels of intermediate steps of the DSP procedure.
Fig. 5: Representative gels of intermediate steps of the HCHO-only procedure in HEK293T cells.

Similar content being viewed by others

Data availability

All datasets used for presentation of expected results obtained with Sel-TCP-seq are available at NCBI Geo (GSE168977 for the DSP procedure and GSE139132 for the HCHO-only procedure). These datasets were published previously14,15.

Code availability

Custom software written for the ‘DSP Procedure’ is available at https://github.com/aurelioteleman/Teleman-Lab and the Zenodo repository (https://doi.org/10.5281/zenodo.5751288)56,57. Custom software written for the ‘HCHO-only Procedure’ is available at https://github.com/Zuzalka/TCP-seq/tree/v1.0.0-alpha and the Zenodo repository (https://doi.org/10.5281/zenodo.6079350)58.

References

  1. Tahmasebi, S., Khoutorsky, A., Mathews, M. B. & Sonenberg, N. Translation deregulation in human disease. Nat. Rev. Mol. Cell Biol. 19, 791–807 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Kronstad, L. M. & Glaunsinger, B. A. Diverse virus–host interactions influence RNA-based regulation during γ-herpesvirus infection. Curr. Opin. Microbiol. 15, 506–511 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7, 1534–1550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Janich, P., Arpat, A. B., Castelo-Szekely, V., Lopes, M. & Gatfield, D. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames. Genome Res. 25, 1848–1859 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chotewutmontri, P., Stiffler, N., Watkins, K. P. & Barkan, A. Ribosome profiling in maize. Maize. Methods Mol. Biol. 1676, 165–183 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Mohammad, F., Green, R. & Buskirk, A. R. A systematically-revised ribosome profiling method for bacteria reveals pauses at single-codon resolution. eLife 8, e42591 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gelsinger, D. R. et al. Ribosome profiling in archaea reveals leaderless translation, novel translational initiation sites, and ribosome pausing at single codon resolution. Nucleic Acids Res. 48, 5201–5216 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jensen, B. C. et al. Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics 15, 911 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ingolia, N. T., Hussmann, J. A. & Weissman, J. S. Ribosome profiling: global views of translation. Cold Spring Harb. Perspect. Biol. 11, a032698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shirokikh, N. E., Archer, S. K., Beilharz, T. H., Powell, D. & Preiss, T. Translation complex profile sequencing to study the in vivo dynamics of mRNA–ribosome interactions during translation initiation, elongation and termination. Nat. Protoc. 12, 697–731 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Archer, S. K., Shirokikh, N. E., Beilharz, T. H. & Preiss, T. Dynamics of ribosome scanning and recycling revealed by translation complex profiling. Nature 535, 570–574 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Sen, N. D. et al. Functional interplay between DEAD-box RNA helicases Ded1 and Dbp1 in preinitiation complex attachment and scanning on structured mRNAs in vivo. Nucleic Acids Res. 47, 8785–8806 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wagner, S. et al. Selective translation complex profiling reveals staged initiation and co-translational assembly of initiation factor complexes. Mol. Cell 79, 546–560.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bohlen, J., Fenzl, K., Kramer, G., Bukau, B. & Teleman, A. A. Selective 40S footprinting reveals cap-tethered ribosome scanning in human cells. Mol. Cell 79, 561–574.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Jackson, V. Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent. Cell 15, 945–954 (1978).

    Article  CAS  PubMed  Google Scholar 

  17. Toews, J., Rogalski, J. C. & Kast, J. Accessibility governs the relative reactivity of basic residues in formaldehyde-induced protein modifications. Anal. Chim. Acta 676, 60–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Solomon, M. J. & Varshavsky, A. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc. Natl. Acad. Sci. USA 82, 6470–6474 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Valášek, L., Szamecz, B., Hinnebusch, A. G. & Nielsen, K. H. In vivo stabilization of preinitiation complexes by formaldehyde cross-linking. Methods Enzym. 429, 163–183 (2007).

    Article  Google Scholar 

  20. Oh, E. et al. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147, 1295–1308 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wong, C. C., Traynor, D., Basse, N., Kay, R. R. & Warren, A. J. Defective ribosome assembly in Shwachman–Diamond syndrome. Blood 118, 4305–4312 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, B. & Qian, S.-B. Characterizing inactive ribosomes in translational profiling. Translation 4, e1138018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vaklavas, C., Blume, S. W. & Grizzle, W. E. Translational dysregulation in cancer: molecular insights and potential clinical applications in biomarker development. Front. Oncol. 7, 158 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Baser, A. et al. Onset of differentiation is post-transcriptionally controlled in adult neural stem cells. Nature 566, 100–104 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Luchessi, A. D. et al. Involvement of eukaryotic translation initiation factor 5A (eIF5A) in skeletal muscle stem cell differentiation. J. Cell. Physiol. 218, 480–489 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Sampath, P. et al. A hierarchical network controls protein translation during murine embryonic stem cell self-renewal and differentiation. Cell Stem Cell 2, 448–460 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Holt, C. E. & Schuman, E. M. The central dogma decentralized: new perspectives on RNA function and local translation in. neurons. Neuron 80, 648–657 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Holt, C. E., Martin, K. C. & Schuman, E. M. Local translation in neurons: visualization and function. Nat. Struct. Mol. Biol. 26, 557–566 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Glock, C., Heumüller, M. & Schuman, E. M. mRNA transport & local translation in neurons. Curr. Opin. Neurobiol. 45, 169–177 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Ichihara, K. et al. Combinatorial analysis of translation dynamics reveals eIF2 dependence of translation initiation at near-cognate codons. Nucleic Acids Res. 49, 7298–7317 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Young, D. J., Meydan, S. & Guydosh, N. R. 40S ribosome profiling reveals distinct roles for Tma20/Tma22 (MCT-1/DENR) and Tma64 (eIF2D) in 40S subunit recycling. Nat. Commun. 12, 2976 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McGlincy, N. J. & Ingolia, N. T. Transcriptome-wide measurement of translation by ribosome profiling. Methods 126, 112–129 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Brar, G. A. & Weissman, J. S. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat. Rev. Mol. Cell Biol. 16, 651–664 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gerashchenko, M. V. & Gladyshev, V. N. Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Res. 42, e134–e134 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu, C. C.-C., Zinshteyn, B., Wehner, K. A. & Green, R. High-resolution ribosome profiling defines discrete ribosome elongation states and translational regulation during cellular stress. Mol. Cell 73, 959–970.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lareau, L. F., Hite, D. H., Hogan, G. J. & Brown, P. O. Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. eLife 3, 01257 (2014).

    Article  Google Scholar 

  37. Becker, A. H., Oh, E., Weissman, J. S., Kramer, G. & Bukau, B. Selective ribosome profiling as a tool for studying the interaction of chaperones and targeting factors with nascent polypeptide chains and ribosomes. Nat. Protoc. 8, 2212–2239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Döring, K. et al. Profiling Ssb-nascent chain interactions reveals principles of Hsp70-assisted folding. Cell 170, 298–311.e20 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shiber, A. et al. Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature 561, 268–272 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zinshteyn, B., Wangen, J. R., Hua, B. & Green, R. Nuclease-mediated depletion biases in ribosome footprint profiling libraries. RNA 26, 1481–1488 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ingolia, N. T. Genome-wide translational profiling by ribosome footprinting. Methods Enzym. 470, 119–142 (2010).

    Article  CAS  Google Scholar 

  42. Pringle, E. S., McCormick, C. & Cheng, Z. Polysome profiling analysis of mRNA and associated proteins engaged in translation. Curr. Protoc. Mol. Biol. 125, e79 (2019).

    Article  PubMed  Google Scholar 

  43. Pospísek, M. & Valásek, L. Polysome profile analysis – yeast. Methods Enzymol. 530, 173–181 (2013).

    Article  PubMed  Google Scholar 

  44. He, S. L. & Green, R. Polysome analysis of mammalian cells. Methods Enzymol. 530, 183–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Meydan, S. & Guydosh, N. R. Disome and trisome profiling reveal genome-wide targets of ribosome quality control. Mol. Cell 79, 588–602.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han, P. et al. Genome-wide survey of ribosome collision. Cell Rep. 31, 107610 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).

    Article  Google Scholar 

  48. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin, Y. et al. eIF3 associates with 80S ribosomes to promote translation elongation, mitochondrial homeostasis, and muscle health. Mol. Cell 79, 575–587.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Gu, Y., Mao, Y., Jia, L., Dong, L. & Qian, S.-B. Bi-directional ribosome scanning controls the stringency of start codon selection. Nat. Commun. 12, 6604 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Giess, A. et al. Profiling of small ribosomal subunits reveals modes and regulation of translation initiation. Cell Rep. 31, 107534 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Teleman, A. Selective footprinting of 40S and 80S ribosome subpopulations (Sel-TCP-seq) to study translation and its control. aurelioteleman/Teleman-Lab: v1.0.0 (v1.0.0), Zenodo (2021)

  57. Clemm von Hohenberg, K. et al. Cyclin B/CDK1 and Cyclin A/CDK2 phosphorylate DENR to promote mitotic protein translation and faithful cell division. Nat. Commun. 13, 668 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wagner, S. Selective footprinting of 40S and 80S ribosome subpopulations (Sel-TCP-seq) to study translation and its control. Zuzalka/TCP-seq: (v1.0.0-alpha), Zenodo (2022)

Download references

Acknowledgements

We are grateful to members of the Preiss, Valášek and Teleman labs for insightful discussions. This work was supported by a Grant of Excellence in Basic Research (EXPRO 2019) provided by the Czech Science Foundation (19-25821X to L.S.V.), ELIXIR CZ research infrastructure project (MEYS grant no. LM2018131) including access to computing and storage facilities. Funding to T.P. was provided by an NHMRC Senior Research Fellowship (APP1135928), an Australian Research Council Discovery Project grant (DP180100111) and a Cancer Council ACT Project grant (APP1120469).

Author information

Authors and Affiliations

Authors

Contributions

S.W., J.B., A.H., T.P., L.S.V. and A.T. conceived and designed the project. S.W., J.B. and A.H. carried out all experimental procedures. S.W. and J.B. performed the data analysis with help from J.J. S.W., J.B. and A.H. led the preparation of the manuscript, with T.P., L.S.V. and A.T. All authors provided feedback on the manuscript and approved the final draft.

Corresponding authors

Correspondence to Thomas Preiss, Leoš Shivaya Valášek or Aurelio A. Teleman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Shintaro Iwasaki, Shu-Bing Qian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Related links

Key references using this protocol

Bohlen, J. et al. Mol. Cell 79, 561–574 (2020): https://doi.org/10.1016/j.molcel.2020.06.005

Wagner, S. et al. Mol. Cell 79, 546–560 (2020): https://doi.org/10.1016/j.molcel.2020.06.004

Bohlen, J. et al. Nat. Commun. 11, 4676 (2020): https://doi.org/10.1038/s41467-020-18452-2

This protocol is an extension to: Nat. Protoc. 12, 697–713 (2017): https://doi.org/10.1038/nprot.2016.189

Extended data

Extended Data Fig. 1 Useful representation of the selected 40S and 80S libraries, complementing Fig. 5.

The datasets are available at NCBI Geo (GSE168977 and GSE139132). Similar plots, i.e., plots generated from the same datasets, were published previously1,2. ah, Metagene plots of the distribution of the footprint length at any position around the start codon represented as a heatmap. The position of the 5′ end of the footprint is plotted. In ad, counts are plotted in linear scale with a cap. In eh, counts are plotted in log10 scale. The full data range is represented. a and e show eIF3B-40S footprints from the HCHO-only procedure. b and f show eIF3B-80S footprints from the HCHO-only procedure. c and g show eIF4G1-40S footprints from the DSP procedure. d and h show eIF4G1-80S footprints from the DSP procedure. Note: For this specific eIF4G1-80S library, we carried out 75 sequencing cycles, and therefore, longer footprints are also detected.

Extended Data Fig. 2 Examples of results useful for optimization experiments, complementing Box 1, and a breakdown of the remaining sequencing reads.

a, Western blots of sucrose gradient fractions of three HEK293T lysates cross-linked with increasing efficiency. Probing with antibodies against a small ribosomal protein (RPS14) and a large ribosomal protein (RPL13) reveals fractions of 40S ribosomes and the polysomal fractions. Probing with antibodies against translation initiation factors eIF3A and eIF3B shows that, with increasing cross-linking efficiency, less eIF3A and eIF3B falls off the ribosomes during the high-velocity centrifugation, and therefore, more of these factors can be found in polysomal fractions as well as on the 40S. b, Profiles from three HEK293T lysates treated with EDTA. The cells were cross-linked with different efficiencies. The blue profile displays efficient EDTA-mediated splitting of the 80S ribosome into its 40S and 60S subunits, while the green profile displays reduced splitting, indicating efficient cross-linking of the cells. The red profile shows very efficient prevention of ribosome splitting and, at the same time, low polysomes. According to our experience, it reflects over-cross-linking of cells. c, Polysome profiles of HEK293T lysates that were either treated with cycloheximide (CHX, black profile) or cross-linked with different efficiencies indicated. The red profile represents over-cross-linking, while the blue profile represents under-cross-linking (large increase in 80S ribosomes and light polysomes and decrease in heavy polysomes). Panel c reproduced with permission from ref. 14, Elsevier. d, Profiles of HEK293T lysates of cross-linked cells that were either left undigested (black profile) or digested with different RNase I concentrations. The green profile presents the most optimal digested lysate of the depicted profiles. e,f, Breakdown of the remaining fraction of sequencing reads after adapter removal (only those reads were kept that had an adapter and that were sufficiently long after adapter trimming), after rRNA removal and after mapping to a reference genome or transcriptome. e shows the breakdown for many libraries prepared according to the DSP procedure with the horizontal bar representing the average, and f for one exemplary library prepared according to the HCHO-only procedure.

Supplementary information

Supplementary Data 1

An exemplary bash script for data analysis as presented in the DSP procedure.

Supplementary Data 2

The fasta files used to deplete mouse and human rRNA sequences for data analysis as presented in the DSP procedure.

Supplementary Data 3

The fasta files used to deplete mouse and human tRNA sequences for data analysis as presented in the DSP procedure.

Supplementary Data 4

Tab-delimited text file containing feature identifiers and a position coordinate for each feature, to be used as an input file for generating metagene plots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, S., Bohlen, J., Herrmannova, A. et al. Selective footprinting of 40S and 80S ribosome subpopulations (Sel-TCP-seq) to study translation and its control. Nat Protoc 17, 2139–2187 (2022). https://doi.org/10.1038/s41596-022-00708-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00708-4

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics