Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A clinically relevant model of focal embolic cerebral ischemia by thrombus and thrombolysis in rhesus monkeys

Subjects

Abstract

Over decades of research into the treatment of stroke, nearly all attempts to translate experimental treatments from discovery in cells and rodents to use in humans have failed. The prevailing belief is that it might be necessary to pretest pharmacological neuroprotection in higher-order brains, especially those of nonhuman primates (NHPs). Over the past few years, chemical thrombolysis and mechanical thrombectomy have been established as the standard of care for ischemic stroke in patients. The spotlight is now shifting towards emphasizing both focal ischemia and subsequent reperfusion in developing a clinically relevant stroke model in NHPs. This protocol describes an embolic model of middle cerebral artery occlusion in adult rhesus monkeys. An autologous clot is combined with a microcatheter or microwire through endovascular procedures, and reperfusion is achieved through local intra-artery thrombolysis with tissue plasminogen activator. These NHP models formed relatively stable infarct sizes, delivered predictable reperfusion and survival outcomes, and recapitulated key characteristics of patients with ischemic stroke as observed on MRI images and behavioral assays. Importantly, treated animals could survive 30 d after the surgery for post-stroke neurologic deficit analyses. Thus far, this model has been used in several translational studies. Here we describe in detail the teamwork necessary for developing stroke models of NHPs, including the preoperation preparations, endovascular surgery, postoperation management and histopathological analysis. The model can be established by the following procedures over a 45-d period, including preparation steps (14 d), endovascular operation (1 d) and evaluation steps (30 d).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomic features of brain arteries and parameters of endovascular materials based on cerebral arteriograms.
Fig. 2: Overview of the protocol for the development and assessment of an ischemic stroke model in NHPs.
Fig. 3: Preparing the clot and testing its feasibility in vitro.
Fig. 4: Graphical images and cerebral arteriogram (anterior projection) revealing permanent occlusion or reperfusion in NHP models.
Fig. 5: Reperfusion status 24 h post-ischemia and survival at 30 d post-ischemia.
Fig. 6: Infarct sites and sizes in MRI images.
Fig. 7: Neurological deficits assessments and recovery after stroke onset.
Fig. 8: Biopsy and histopathological analysis.

Similar content being viewed by others

Data availability

The datasets that support this study are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Writing Group Members et al, Executive summary: heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 333, 447–454 (2016).

  2. Walker, G. B., Jadhav, A. P. & Jovin, T. G. Assessing the efficacy of endovascular therapy in stroke treatments: updates from the new generation of trials. Expert. Rev. Cardiovasc. Ther. 15, 757–766 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Goyal, M. et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomized trials. Lancet 387, 1723–1731 (2016).

    Article  PubMed  Google Scholar 

  4. Sommer, C. J. Ischemic stroke: experimental models and reality. Acta Neuropathol. 133, 245–261 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shi, L. et al. A new era for stroke therapy: integrating neurovascular protection with optimal reperfusion. J. Cereb. Blood Flow. Metab. 38, 2073–2091 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O’Collins, V. E. et al. 1,026 experimental treatments in acute stroke. Ann. Neurol. 59, 467–477 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. Fisher, M. et al. Update of the Stroke Therapy Academic Industry Roundtable preclinical recommendations. Stroke 40, 2244–2250 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu, D., Yue, F., Zou, C., Chan, P. & Zhang, Y. A. Analysis of glucose metabolism in cynomolgus monkeys during aging. Biogerontology 13, 147–155 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Astrup, J., Siesjö, B. K. & Symon, L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 12, 723–725 (1981).

    Article  CAS  PubMed  Google Scholar 

  10. Cook, D. J., Teves, L. & Tymianski, M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature 483, 213–217 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Marshall, J. W. et al. NXY-059, a free radical-trapping agent, substantially lessens the functional disability resulting from cerebral ischemia in a primate species. Stroke 32, 190–198 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Herrmann, A. M. et al. Large animals in neurointerventional research: a systematic review on models, techniques and their application in endovascular procedures for stroke, aneurysms and vascular malformations. J. Cereb. Blood Flow. Metab. 39, 375–394 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hill, M. D. et al. Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): a multicentre, double-blind, randomised controlled trial. Lancet 395, 878–887 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Mayor-Nunez, D. et al. Plasmin-resistant PSD-95 inhibitors resolve effect-modifying drug-drug interactions between alteplase and nerinetide in acute stroke. Sci. Transl. Med. 13, eabb1498 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Roitberg, B. et al. Chronic ischemic stroke model in cynomolgus monkeys: behavioral, neuroimaging and anatomical study. Neurol. Res. 25, 68–78 (2003).

    Article  PubMed  Google Scholar 

  16. Wu, D. et al. Endovascular ischemic stroke models of adult rhesus monkeys: a comparison of two endovascular methods. Sci. Rep. 6, 31608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, D. et al. Selective intraarterial brain cooling improves long-term outcomes in a non-human primate model of embolic stroke: efficacy depending on reperfusion status. J. Cereb. Blood Flow. Metab. 40, 1415–1426 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu, L. et al. Intranasal salvinorin A improves neurological outcome in rhesus monkey ischemic stroke model using autologous blood clot. J. Cereb. Blood Flow. Metab. 41, 723–730 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Fang, Z. et al. A MD2-perturbing peptide has therapeutic effects in rodent and rhesus monkey models of stroke. Sci. Trans. Med. 13, eabb6716 (2021).

    Article  CAS  Google Scholar 

  20. Gao, Y. et al. Novel acute retinal artery ischemia and reperfusion model in nonhuman primates. Stroke 51, 2568–2572 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Mergenthaler, P. & Meisel, A. Do stroke models model stroke? Dis. Model. Mech. 5, 718–725 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Marshall, J. W. et al. Serial MRI, functional recovery, and long-term infarct maturation in a non-human primate model of stroke. Brain Res. Bull. 61, 577–585 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Boltze, J. et al. New mechanistic insights, novel treatment paradigms, and clinical progress in cerebrovascular diseases. Front. Aging Neurosci. 13, 623751 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, B. et al. A more consistent intraluminal rhesus monkey model of ischemic stroke. Neural Regen. Res. 9, 2087–2094 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. de Crespigny, A. J. et al. Acute studies of a new primate model of reversible middle cerebral artery occlusion. J. Stroke Cerebrovasc. Dis. 14, 80–87 (2015).

    Article  Google Scholar 

  26. Fisher, M. Endovascular therapy for basilar-artery occlusion—still waiting for answers. N. Engl. J. Med. 384, 1954–1955 (2021).

    Article  PubMed  Google Scholar 

  27. Wu, D. et al. Primate version of modified Rankin scale for classifying dysfunction in rhesus monkeys. Stroke 51, 1620–1623 (2020).

    Article  PubMed  Google Scholar 

  28. Wu, D. et al. Reperfusion plus selective intra-arterial cooling (SI-AC) improve recovery in a nonhuman primate model of stroke. Neurotherapeutics 17, 1931–1939 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Susumu, T. et al. Effects of intra-arterial urokinase on a non-human primate thromboembolic stroke model. J. Pharmacol. Sci. 100, 278–284 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Qureshi, A. I. et al. Intraarterial reteplase and intravenous abciximab for treatment of acute ischemic stroke. A preliminary feasibility and safety study in a nonhuman primate model. Neuroradiology 47, 845–854 (2005).

    Article  PubMed  Google Scholar 

  31. Yoshikawa, T. et al. Ginsenoside Rb1 reduces neurodegeneration in the peri-infarct area of a thromboembolic stroke model in non-human primates. J. Pharmacol. Sci. 107, 32–40 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Kuge, Y. et al. Serial changes in cerebral blood flow and flow-metabolism uncoupling in primates with acute thromboembolic stroke. J. Cereb. Blood Flow. Metab. 21, 202–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Jickling, G. C. & Sharp, F. R. Improving the translation of animal ischemic stroke studies to humans. Metab. Brain. Dis. 30, 461–467 (2005).

    Article  CAS  Google Scholar 

  34. Yi, K. S. et al. Sustained diffusion reversal with inbore reperfusion in monkey stroke models: confirmed by prospective magnetic resonance imaging. J. Cereb. Blood Flow. Metab. 37, 2002–2012 (2017).

    Article  PubMed  Google Scholar 

  35. Li, K. et al. Pilot study of endovascular delivery of mesenchymal stromal cells in the aortic wall in a pig model. Cell Transplant. 30, 9636897211010652 (2021).

    PubMed  Google Scholar 

  36. Camstra, K. M. et al. Canine model for selective and superselective cerebral intra-arterial therapy testing. Neurointervention 15, 107–116 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kringe, L. et al. Quality and validity of large animal experiments in stroke: a systematic review. J. Cereb. Blood Flow. Metab. 40, 2152–2164 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Debatisse, J. et al. A non-human primate model of stroke reproducing endovascular thrombectomy and allowing long-term imaging and neurological read-outs. J. Cereb. Blood Flow. Metab. 41, 745–760 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, Z. et al. Adjuvant treatment with neuroserpin increases the therapeutic window for tissue-type plasminogen activator administration in a rat model of embolic stroke. Circulation 106, 740–745 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Z. & Chopp, M. Neural stem cells and ischemic brain. J. Stroke 18, 267–272 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gauberti, M. et al. Thrombotic stroke in the anesthetized monkey (Macaca mulatta): characterization by MRI—a pilot study. Cerebrovasc. Dis. 33, 329–339 (2012).

    Article  PubMed  Google Scholar 

  42. Fisher, M. & Saver, J. L. Future directions of acute ischaemic stroke therapy. Lancet Neurol. 14, 758–767 (2015).

    Article  PubMed  Google Scholar 

  43. Takamatsu, H. et al. Detection of reperfusion injury using PET in a monkey model of cerebral ischemia. J. Nucl. Med. 41, 1409–1416 (2000).

    CAS  PubMed  Google Scholar 

  44. Sawada, H. et al. SMTP-7, a novel small-molecule thrombolytic for ischemic stroke: a study in rodents and primates. J. Cereb. Blood Flow. Metab. 34, 235–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Grow, D. A., McCarrey, J. R. & Navara, C. S. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson’s disease. Stem Cell. Res. 17, 352–366 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. McEntire, C. R. et al. Impaired arm function and finger dexterity in a nonhuman primate model of stroke: motor and cognitive assessments. Stroke 47, 1109–1116 (2006).

    Article  Google Scholar 

  47. Kito, G. et al. Experimental thromboembolic stroke in cynomolgus monkeys. J. Neurosci. Methods 105, 45–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Cui, L. L., Golubczyk, D., Tolppanen, A. M., Boltze, J. & Jolkkonen, J. Cell therapy for ischemic stroke: are differences in preclinical and clinical study design responsible for the translational loss of efficacy? Ann. Neurol. 86, 5–16 (2019).

    PubMed  Google Scholar 

  49. Neuhaus, A. A., Couch, Y., Hadley, G. & Buchan, A. M. Neuroprotection in stroke: the importance of collaboration and reproducibility. Brain 140, 2079–2092 (2017).

    Article  PubMed  Google Scholar 

  50. Tibussek, D. et al. Severe cerebral vasospasm and childhood arterial ischemic stroke after intrathecal cytarabine. Pediatrics 137, e20152143 (2016).

    Article  PubMed  Google Scholar 

  51. Amlie-Lefond, C. & Wainwright, M. S. Childhood stroke: thinking locally, acting globally? Stroke 52, 162–163 (2021).

    Article  PubMed  Google Scholar 

  52. Chen, X. et al. An ischemic stroke model of nonhuman primates for remote lesion studies: a behavioral and neuroimaging investigation. Restor. Neurol. Neurosci. 33, 131–142 (2015).

    PubMed  Google Scholar 

  53. Powers, W. J. Acute ischemic stroke. N. Engl. J. Med. 383, 252–260 (2020).

    Article  PubMed  Google Scholar 

  54. Cook, D. J. & Tymianski, M. Nonhuman primate models of stroke for translational neuroprotection research. Neurotherapeutics 9, 371–379 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dai, P. et al. A pilot study on transient ischemic stroke induced with endothelin-1 in the rhesus monkeys. Sci. Rep. 7, 45097 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Del Zoppo, G. J. et al. Experimental acute thrombotic stroke in baboons. Stroke 17, 1254–1265 (1986).

    Article  PubMed  Google Scholar 

  57. Watanabe, O., Bremer, A. M. & West, C. R. Experimental regional cerebral ischemia in the middle cerebral artery territory in primates. Part 1: angio-anatomy and description of an experimental model with selective embolization of the internal carotid artery bifurcation. Stroke 8, 61–70 (1977).

    Article  CAS  PubMed  Google Scholar 

  58. Cook, D. J., Teves, L. & Tymianski, M. A translational paradigm for the preclinical evaluation of the stroke neuroprotectant Tat-NR2B9c in gyrencephalic nonhuman primates. Sci. Transl. Med. 4, 154ra133 (2012).

    PubMed  Google Scholar 

  59. D’Arceuil, H. E., Duggan, M., He, J., Pryor, J. & de Crespigny, A. Middle cerebral artery occlusion in Macaca fascicularis: acute and chronic stroke evolution. J. Med. Primatol. 35, 78–86 (2006).

    Article  PubMed  Google Scholar 

  60. Tong, F. C. et al. An enhanced model of middle cerebral artery occlusion in nonhuman primates using an endovascular trapping technique. Am. J. Neuroradiol. 36, 2354–2359 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, X. et al. Temporal evolution of ischemic lesions in nonhuman primates: a diffusion and perfusion MRI study. PLoS ONE 10, e0117290 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zhang, L. et al. Focal embolic cerebral ischemia in the rat. Nat. Protoc. 10, 539–547 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yonas, H., Wolfson, S. K. Jr., Dujovny, M., Boehnke, M. & Cook, E. Selective lenticulostriate occlusion in the primate. A highly focal cerebral ischemia model. Stroke 12, 567–572 (1981).

    Article  CAS  PubMed  Google Scholar 

  64. Ciccone, A. et al. Endovascular treatment for acute ischemic stroke. N. Engl. J. Med. 368, 904–913 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Berkhemer, O. A. et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 372, 11–20 (2015).

    Article  PubMed  CAS  Google Scholar 

  66. Nair, A. B. & Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 7, 27–31 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Higashida, R. T. et al. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke 34, 109–137 (2003).

    Article  Google Scholar 

  68. Institute for Laboratory Animal Research. Guide for the care and use of laboratory animals. Washington, DC: National Academies Press (2011).

  69. Won, J. et al. Assessment of hand motor function in a non-human primate model of ischemic stroke. Exp. Neurobiol. 29, 300–313 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang, Z. et al. A pilot behavioural and neuroimaging investigation on photothrombotic stroke models in rhesus monkeys. J. Neurosci. Methods 362, 109291 (2021).

    Article  PubMed  Google Scholar 

  71. Sparks, D. S. et al. A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction. Nat. Protoc. 15, 877–924 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Jia, J. M. et al. Control of cerebral ischemia with magnetic nanoparticles. Nat. Methods 14, 160–166 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Sneed, S. E. et al. Magnetic resonance imaging and gait analysis indicate similar outcomes between Yucatan and Landrace porcine ischemic stroke models. Front. Neurol. 11, 594954 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cattaneo, G. F. et al. Selective intra-carotid blood cooling in acute ischemic stroke: a safety and feasibility study in an ovine stroke model. J. Cereb. Blood Flow. Metab. 41, 3097–3110 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shazeeb, M. S. et al. Infarct evolution in a large animal model of middle cerebral artery occlusion. Transl. Stroke Res. 11, 468–480 (2020).

    Article  PubMed  Google Scholar 

  76. Kurisu, K. et al. Cofilin-actin rod formation in experimental stroke is attenuated by therapeutic hypothermia and overexpression of the inducible 70 kD inducible heat shock protein (Hsp70). Brain Circ. 5, 225–233 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shin, H. K. et al. Normobaric hyperoxia improves cerebral blood flow and oxygenation, and inhibits peri-infarct depolarizations in experimental focal ischaemia. Brain 130, 1631–1642 (2007).

    Article  PubMed  Google Scholar 

  78. Saver, J. L. et al. Thrombectomy for distal, medium vessel occlusions: a consensus statement on present knowledge and promising directions. Stroke 51, 2872–2884 (2020).

    Article  PubMed  Google Scholar 

  79. Jia, L., Chopp, M., Zhang, L., Lu, M. & Zhang, Z. Erythropoietin in combination of tissue plasminogen activator exacerbates brain hemorrhage when treatment is initiated 6 hours after stroke. Stroke 41, 2071–2076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu, D. et al. Selective therapeutic cooling: to maximize benefits and minimize side effects related to hypothermia. J. Cereb. Blood Flow. Metab. 42, 213–215 (2022).

    Article  PubMed  Google Scholar 

  81. McTaggart, R. A. et al. Optimization of endovascular therapy in the neuroangiography suite to achieve fast and complete (expanded treatment in cerebral ischemia 2c-3) reperfusion. Stroke 51, 1961–1968 (2020).

    Article  PubMed  Google Scholar 

  82. Bouts, M. J. et al. Magnetic resonance imaging-based cerebral tissue classification reveals distinct spatiotemporal patterns of changes after stroke in non-human primates. BMC Neurosci. 16, 91 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Van Winkle, J. A. et al. Concurrent middle cerebral artery occlusion and intra-arterial drug infusion via ipsilateral common carotid artery catheter in the rat. J. Neurosci. Methods 213, 63–69 (2013).

    Article  PubMed  CAS  Google Scholar 

  84. Tian, H. et al. Influence of occlusion site and baseline ischemic core on outcome in patients with ischemic stroke. Neurology 92, e2626–e2643 (2019).

    Article  PubMed  Google Scholar 

  85. Chamorro, Á., Lo, E. H., Renú, A., van Leyden, K. & Lyden, P. D. The future of neuroprotection in stroke. J. Neurol. Neurosurg. Psychiatry 92, 129–135 (2021).

    Article  PubMed  Google Scholar 

  86. van Leyen, K., Wang, X., Selim, M. & Lo, E. H. Opening the time window. J. Cereb. Blood Flow. Metab. 39, 2539–2540 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Liu, Y. et al. Serial diffusion tensor MRI after transient and permanent cerebral ischemia in nonhuman primates. Stroke 38, 138–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Mărgăritescu, O. et al. Histopathological changes in acute ischemic stroke. Rom. J. Morphol. Embryol. 50, 327–339 (2009).

    PubMed  Google Scholar 

  89. Powers, W. J. et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 50, e344–e418 (2019).

    Article  PubMed  Google Scholar 

  90. Li, S. et al. White matter demyelination predates axonal injury after ischemic stroke in cynomolgus monkeys. Exp. Neurol. 340, 113655 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Spetzler, R. F., Zabramski, J. M., Kaufman, B. & Yeung, H. N. Acute NMR changes during MCA occlusion: a preliminary study in primates. Stroke 14, 185–191 (1983).

    Article  CAS  PubMed  Google Scholar 

  92. Kaiser, E. E. & West, F. D. Large animal ischemic stroke models: replicating human stroke pathophysiology. Neural Regen. Res. 15, 1377–1387 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Meloni, B. P. et al. Poly-Arginine Peptide-18 (R18) reduces brain injury and improves functional outcomes in a nonhuman primate stroke model. Neurotherapeutics 17, 627–634 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Harding, J. D. Nonhuman primates and translational research: progress, opportunities, and challenges. ILAR J. 58, 141–150 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu, D., Chandra, A., Chen, J., Ding, Y. & Ji, X. Endovascular ischemic stroke models in nonhuman primates. Neurotherapeutics 15, 146–155 (2018).

    Article  PubMed  Google Scholar 

  96. Fukuda, S. & del Zoppo, G. J. Models of focal cerebral ischemia in the nonhuman primate. ILAR J. 44, 96–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Sorby-Adams, A. J., Vink, R. & Turner, R. J. Large animal models of stroke and traumatic brain injury as translational tools. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315, R165–R190 (2018).

    Article  PubMed  CAS  Google Scholar 

  98. Bihel, E. et al. Permanent or transient chronic ischemic stroke in the non-human primate: behavioral, neuroimaging, histological, and immunohistochemical investigations. J. Cereb. Blood Flow. Metab. 30, 273–285 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82027802, 82071466, 81871022, 82071312, 82171304 and 82071468); National Key R&D Program of China (2017YFC1308401); and the ‘mission’ talent project of Beijing Municipal Administration of Hospitals (SML20150802); Beijing Municipal Science and Technology Project (Z181100001918026). We also thank P. Coan for language editing.

Author information

Authors and Affiliations

Authors

Contributions

X.J., Y.D. and D.W. designed the experiments. D.W., J.C., L.W., C.W., X. Zhi and X. Zhang performed endovascular surgery. X.H., Z.Z., F.Y. and Shengli L. performed monkey management, including preparation and supportive treatment. X.H. and Z.Z. evaluated neurological deficit and behavior testing. J.S., Y.D. and Y.F performed HE staining and analysis. M.Z. and Siejie L. performed MRI scanning and analysis. Y.M. performed anesthetic management. D.W., H.L. and X.J. wrote and edited the manuscript together. Y.D. helped to develop the model and edited the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Xunming Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Youngjeon Lee, Hideo Tsukada and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related Links

Key references using this protocol

Wu, D. et al. J. Cereb. Blood Flow Metab. 40, 1415–1426 (2020): https://doi.org/10.1177/0271678×20903697

Zhao, B. et al. Neural. Regen. Res. 9, 2087–2094 (2014): https://doi.org/10.4103/1673-5374.147936

Wu, D. et al. Sci. Rep. 6, 31608 (2016): https://doi.org/10.1038/srep31608

Fang, Z. et al. Sci. Transl. Med. 13, eabb6716 (2021): https://doi.org/10.1126/scitranslmed.abb6716

Wu, L. et al. J. Cereb. Blood Flow Metab. 41, 723–730 (2021): https://doi.org/10.1177/0271678×20938137

Gao, Y. et al. Stroke 51, 2568–2572 (2020): https://doi.org/10.1161/STROKEAHA.119.028809

Wu, D. et al. Stroke 51, 1620–1623 (2020): https://doi.org/10.1161/STROKEAHA.119.028108

Wu, D. et al. Neurotherapeutics 17, 1931–1939 (2020): https://doi.org/10.1007/s13311-020-00895-6

Extended data

Extended Data Fig. 1 The winged infusion set tube.

Fresh blood was collected from the model to form a whole blood clot (a red clot) in a winged infusion set tube (below).

Extended Data Fig. 2 The behavior observation cage.

The diagram of the behavior observation cage is shown below, which is larger than the living cages in the facility. It is 120 × 120 × 150 cm in size. One side is equipped with transparent tempered plexiglass for recording with a camera. One side contains screw holes for fastening behavior test equipment.

Extended Data Fig. 3 Food-pickup test equipment.

a, the schematic diagram of the equipment, including two entrances in both sides. b, Four time-recording coils (in red) are placed near entrance A and B at both sides. c, The food is place in the middle of the feeding plate. d, The total time for a complete food pickup was defined as the time period for the animal to reach out to the receptacle (record B), pick up and withdraw food (record A). The normal arm can grasp the food swiftly (<1 s), but the affected arm cannot grasp the food.

Extended Data Fig. 4 The schematic diagram of the stretcher and head holder.

a, The spineboard stretcher. b, The monkey was fixed in a spineboard stretcher in an upright position. c, The head is placed in a custom-made holder to reduce movement during endovascular surgery.

Extended Data Fig. 5 The impaired neurological functions over a 30-d observation period in a model of M1 occlusion and reperfusion.

Occlusion and reperfusion in the right MCA were achieved in this model. On the first day after stroke onset, the model was drowsy, showing no appetite for the fruit (1 in red) and no defense reaction. Grasp behavior was absent on the left side (2 in red), which was the damaged side. It did not walk or exhibit extremity movements (such as jump), and only crawled against the guardrail. On day 7, the monkey grasped the fruit (1 in red) with the nonaffected hand (right side), but the grasp was absent in the left hand (2 in red). It could crawl against the guardrail, showing minimal movement and profound weakness, without extremity movements. Facial weakness was profound with constant drooling (3 in red). On day 14, the monkey grasped the fruit (1 in red) with the nonaffected hand (right side) with some help from the affected hand (2 in red). The model exhibited a noticeable preference to turn to right side (circle in the clockwise direction, 4 in red). It could walk and sit on the rail (5 in red) and do some extremity movements (standing up and grasp the top rail, 6 in red). On day 30, the monkey grasped the fruit (1 in red) with the nonaffected hand (right side) with some help from the affected hand (2 in red), but the left arm and hand were noticeably impaired. The model could turn to left side (circle in the counterclockwise direction, 4 in red). It could do some extremity movements (standing up and grasp the top rail, 6 in red).

Extended Data Fig. 6 MR angiography examination at 24 h after stroke onset.

a, M2 permanent model. M2 branch (red) on the right side was invisible, but visible on the other side. b, M2 reperfusion model. M2 branches (white) were visible on both sides. R, right; L, left.

Supplementary information

Source data

Source Data Fig. 7

Statistical source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Chen, J., Wu, L. et al. A clinically relevant model of focal embolic cerebral ischemia by thrombus and thrombolysis in rhesus monkeys. Nat Protoc 17, 2054–2084 (2022). https://doi.org/10.1038/s41596-022-00707-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00707-5

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing