Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tutorial: design and execution of CRISPR in vivo screens

Abstract

Here we provide a detailed tutorial on CRISPR in vivo screening. Using the mouse as the model organism, we introduce a range of CRISPR tools and applications, delineate general considerations for ‘transplantation-based’ or ‘direct in vivo’ screening design, and provide details on technical execution, sequencing readouts, computational analyses and data interpretation. In vivo screens face unique pitfalls and limitations, such as delivery issues or library bottlenecking, which must be counteracted to avoid screening failure or flawed conclusions. A broad variety of in vivo phenotypes can be interrogated such as organ development, hematopoietic lineage decision and evolutionary licensing in oncogenesis. We describe experimental strategies to address various biological questions and provide an outlook on emerging CRISPR applications, such as genetic interaction screening. These technological advances create potent new opportunities to dissect the molecular underpinnings of complex organismal phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vivo screening phenotypes and examples of focused libraries.
Fig. 2: The spectrum of CRISPR system applications in eukaryotes.
Fig. 3: Engineered CRISPR systems for inducing one or more perturbations per cell.
Fig. 4: Stages of a transplantation-based CRISPR in vivo screen.
Fig. 5: Features of polymerase II and III promoters.
Fig. 6: Systems for the delivery of CRISPR components into living tissues.
Fig. 7: Spatial and temporal control of CRISPR activity in direct in vivo screens.
Fig. 8: NGS-based strategies for the analysis of pooled in vivo CRISPR screens.
Fig. 9: Exemplary results: Transplantation-based CRISPRa screen for genetic mediators of bone marrow relapse in leukemia.
Fig. 10: Various bottlenecks during a transplantation-based in vivo screen impact library representation and lead to the dominance of strong enrichers.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research papers (https://doi.org/10.1016/j.cell.2015.02.038 and https://doi.org/10.1073/pnas.1600582113).

References

  1. Weber, J., Braun, C. J., Saur, D. & Rad, R. In vivo functional screening for systems-level integrative cancer genomics. Nat. Rev. Cancer 20, 573–593 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Gilbert, L. A. & Hemann, M. T. DNA damage-mediated induction of a chemoresistant niche. Cell 143, 355–366 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bent, E. H., Gilbert, L. A. & Hemann, M. T. A senescence secretory switch mediated by PI3K/AKT/mTOR activation controls chemoprotective endothelial secretory responses. Genes Dev. 30, 1811–1821 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schneider, G., Schmidt-Supprian, M., Rad, R. & Saur, D. Tissue-specific tumorigenesis: context matters. Nat. Rev. Cancer 17, 239–253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beronja, S. et al. RNAi screens in mice identify physiological regulators of oncogenic growth. Nature 501, 185–190 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. LaFleur, M. W. et al. A CRISPR–Cas9 delivery system for in vivo screening of genes in the immune system. Nat. Commun. 10, 1668 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wuestefeld, T. et al. A direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration. Cell 153, 389–401 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Rogers, Z. N. et al. A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo. Nat. Methods 14, 737–742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Braun, C. J. et al. Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation. Proc. Natl. Acad. Sci. USA. 113, E3892–E3900 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Evers, B. et al. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat. Biotechnol. 34, 631–633 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Sanson, K. R. et al. Optimized libraries for CRISPR–Cas9 genetic screens with multiple modalities. Nat. Commun. 9, 1–15 (2018).

    Article  CAS  Google Scholar 

  13. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, T. et al. Identification and characterization of essential genes in the human genome. Science 350, 1096–1101 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aguirre, A. J. et al. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov. 6, 914–929 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Munoz, D. M. et al. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov. 6, 900–913 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, S. J. et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355, eaah7111 (2017).

    Article  CAS  Google Scholar 

  19. Zhou, H. et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat. Neurosci. 21, 440–446 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Roth, T. L. et al. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell 181, 728–744.e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakamura, M., Gao, Y., Dominguez, A. A. & Qi, L. S. CRISPR technologies for precise epigenome editing. Nat. Cell Biol. 23, 11–22 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Nissim, L., Perli, S. D., Fridkin, A., Perez-Pinera, P. & Lu, T. K. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell 54, 698–710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McCarty, N. S., Graham, A. E., Studená, L. & Ledesma-Amaro, R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat. Commun. 11, 1281 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Labuhn, M. et al. Refined sgRNA efficacy prediction improves large- and small-scale CRISPR–Cas9 applications. Nucleic Acids Res. 46, 1375–1385 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Wessels, H.-H. et al. Massively parallel Cas13 screens reveal principles for guide RNA design. Nat. Biotechnol. 38, 722–727 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Horlbeck, M. A. et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 5, e19760 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hanna, R. E. & Doench, J. G. Design and analysis of CRISPR–Cas experiments. Nat. Biotechnol. 38, 813–823 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. & Valen, E. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 42, 401–407 (2014).

    Article  CAS  Google Scholar 

  29. Heigwer, F., Kerr, G. & Boutros, M. E-CRISP: fast CRISPR target site identification. Nat. Methods 11, 122–123 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Concordet, J. P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meier, J. A., Zhang, F. & Sanjana, N. E. GUIDES: sgRNA design for loss-of-function screens. Nat. Methods 14, 831–832 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, F. et al. In vivo epigenetic crispr screen identifies asf1a as an immunotherapeutic target in kras-mutant lung adenocarcinoma. Cancer Discov. 10, 270–287 (2020).

    Article  PubMed  Google Scholar 

  34. Wu, Q. et al. In vivo CRISPR screening unveils histone demethylase UTX as an important epigenetic regulator in lung tumorigenesis. Proc. Natl. Acad. Sci. USA. 115, E3978–E3986 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Michels, B. E. et al. Pooled in vitro and in vivo CRISPR–Cas9 screening identifies tumor suppressors in human colon organoids. Cell Stem Cell 26, 782–792.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Becker, M. et al. CLUE: a bioinformatic and wet-lab pipeline for multiplexed cloning of custom sgRNA libraries. Nucleic Acids Res. 48, e78 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Charan, J. & Kantharia, N. D. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 4, 303 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ye, L. et al. In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nat. Biotechnol. 37, 1302–1313 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zender, L. et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135, 852–864 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yuen, G. et al. CRISPR/Cas9-mediated gene knockout is insensitive to target copy number but is dependent on guide RNA potency and Cas9/sgRNA threshold expression level. Nucleic Acids Res. 45, 12039–12053 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johansen, J. et al. Evaluation of Tet-on system to avoid transgene down-regulation in ex vivo gene transfer to the CNS. Gene Ther. 9, 1291–1301 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Senturk, S. et al. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. Nat. Commun. 8, 1–10 (2017). 2017 81.

    Article  CAS  Google Scholar 

  44. Aubrey, B. J. et al. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep. 10, 1422–1432 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Lin, S. et al. An in vivo CRISPR screening platform for prioritizing therapeutic targets in AML. Cancer Discov. 12, 432–449 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Knapp, D. J. H. F. et al. Decoupling tRNA promoter and processing activities enables specific Pol-II Cas9 guide RNA expression. Nat. Commun. 10, 1–14 (2019).

    Article  CAS  Google Scholar 

  47. Kiani, S. et al. CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat. Methods 11, 723–726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Campa, C. C., Weisbach, N. R., Santinha, A. J., Incarnato, D. & Platt, R. J. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat. Methods 16, 887–893 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Chylinski, K. et al. CRISPR-Switch regulates sgRNA activity by Cre recombination for sequential editing of two loci. Nat. Commun. 10, 5454 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Mueller, S. et al. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature 554, 62–68 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fomicheva, M. & Macara, I. G. Genome-wide CRISPR screen identifies noncanonical NF-κB signaling as a regulator of density-dependent proliferation. eLife 9, 1–24 (2020).

    Article  Google Scholar 

  52. Panganiban, R. A. et al. Genome-wide CRISPR screen identifies suppressors of endoplasmic reticulum stress-induced apoptosis. Proc. Natl. Acad. Sci. USA. 116, 13384–13393 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maddalo, D. et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516, 423–427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu, C. L., Ruan, M. Z. C., Mahajan, V. B. & Tsang, S. H. Viral delivery systems for crispr. Viruses 11, 28 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  55. Kaltenbacher, T. et al. CRISPR somatic genome engineering and cancer modelling in the mouse pancreas and liver. Nat. Protoc. 17, 1142–1188 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Ferrari, F. K., Samulski, T., Shenk, T. & Samulski, R. J. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J. Virol. 70, 3227–3234 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Maresch, R. et al. Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat. Commun. 7, 10770 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, F., Song, Y. K. & Liu, D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 6, 1258–1266 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fu, Z. & Xiang, J. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy. Int. J. Mol. Sci. 21, 1–39 (2020).

    Article  Google Scholar 

  62. Liang, C. et al. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Biomaterials 147, 68–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Platt, R. J. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chu, V. T. et al. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnol. 16, 4 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Dow, L. E. et al. Conditional reverse tet-transactivator mouse strains for the efficient induction of tre-regulated transgenes in mice. PLoS ONE 9, e95236 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Katigbak, A., Robert, F., Paquet, M. & Pelletier, J. Inducible genome editing with conditional CRISPR/Cas9 mice. G3 Genes Genomes Genet. 8, 1627–1635 (2018).

    CAS  Google Scholar 

  67. Roper, J. et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat. Biotechnol. 35, 569–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Feldser, D. M. et al. Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature 468, 572–575 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. MR, J. et al. Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature 468, 567–571 (2010).

    Article  CAS  Google Scholar 

  70. Rad, R. et al. A genetic progression model of BrafV600E-induced intestinal tumorigenesis reveals targets for therapeutic intervention. Cancer Cell 24, 15–29 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rogers, Z. N. et al. Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nat. Genet. 50, 483–486 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cai, H. et al. A functional taxonomy of tumor suppression in oncogenic KRAS-driven lung cancer. Cancer Discov. 11, 1754–1773 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yau, E. H. & Rana, T. M. Next-generation sequencing of genome-wide CRISPR screens. 1712, 203–216 (2018).

  74. Canver, M. C. et al. Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments. Nat. Protoc. 13, 946–986 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bodapati, S., Daley, T. P., Lin, X., Zou, J. & Qi, L. S. A benchmark of algorithms for the analysis of pooled CRISPR screens. Genome Biol. 21, 1–13 (2020).

    Article  Google Scholar 

  76. Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Li, W. et al. Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol. 16, 281 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, B. et al. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nat. Protoc. 14, 756–780 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hart, T. & Moffat, J. BAGEL: a computational framework for identifying essential genes from pooled library screens. BMC Bioinforma. 17, 164 (2016).

    Article  CAS  Google Scholar 

  80. Daley, T. P. et al. CRISPhieRmix: a hierarchical mixture model for CRISPR pooled screens. Genome Biol. 19, 1–13 (2018).

    Article  CAS  Google Scholar 

  81. Xu, C. et al. piggyBac mediates efficient in vivo CRISPR library screening for tumorigenesis in mice. Proc. Natl. Acad. Sci. USA. 114, 722–727 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Henkel, L., Rauscher, B., Schmitt, B., Winter, J. & Boutros, M. Genome-scale CRISPR screening at high sensitivity with an empirically designed sgRNA library. BMC Biol. 18, 174 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ozawa, T. & James, C. D. Establishing intracranial brain tumor xenografts with subsequent analysis of tumor growth and response to therapy using bioluminescence imaging. J. Vis. Exp. 41, e1986 (2010).

    Google Scholar 

  84. Meacham, C. E., Ho, E. E., Dubrovsky, E., Gertler, F. B. & Hemann, M. T. In vivo RNAi screening identifies regulators of actin dynamics as key determinants of lymphoma progression. Nat. Genet. 41, 1133–1137 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Braun, C. J. et al. Coordinated splicing of regulatory detained introns within oncogenic transcripts creates an exploitable vulnerability in malignant glioma. Cancer Cell 32, 411–426.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Merino, D. et al. Barcoding reveals complex clonal behavior in patient-derived xenografts of metastatic triple negative breast cancer. Nat. Commun. 10, 1–12 (2019).

    CAS  Google Scholar 

  87. Carugo, A. et al. In vivo functional platform targeting patient-derived xenografts identifies WDR5–Myc association as a critical determinant of pancreatic cancer. Cell Rep. 16, 133–147 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Michlits, G. et al. CRISPR-UMI: single-cell lineage tracing of pooled CRISPR–Cas9 screens. Nat. Methods 14, 1191–1197 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Zhu, S. et al. Guide RNAs with embedded barcodes boost CRISPR-pooled screens. Genome Biol. 20, 20 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Morgens, D. W. et al. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens. Nat. Commun. 8, 15178 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927–930 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Chen, C.-H. H. et al. Improved design and analysis of CRISPR knockout screens. Bioinformatics 34, 4095–4101 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wegner, M. et al. Circular synthesized CRISPR/Cas gRNAs for functional interrogations in the coding and noncoding genome. eLife 8, 1–31 (2019).

    Article  Google Scholar 

  94. Imkeller, K., Ambrosi, G., Boutros, M. & Huber, W. Gscreend: modelling asymmetric count ratios in CRISPR screens to decrease experiment size and improve phenotype detection. Genome Biol. 21, 53 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Ashworth, A. & Lord, C. J. Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat. Rev. Clin. Oncol. 15, 564–576 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Horlbeck, M. A. et al. Mapping the genetic landscape of human cells. Cell 174, 953–967.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hegde, M., Strand, C., Hanna, R. E. & Doench, J. G. Uncoupling of sgRNAs from their associated barcodes during PCR amplification of combinatorial CRISPR screens. PLoS ONE 13, 1–16 (2018).

    Article  CAS  Google Scholar 

  100. Hanna, R. E. & Doench, J. G. A case of mistaken identity. Nat. Biotechnol. 36, 802–804 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Diehl, V. et al. Minimized combinatorial CRISPR screens identify genetic interactions in autophagy. Nucleic Acids Res. 49, 5684–5704 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Najm, F. J. et al. Orthologous CRISPR–Cas9 enzymes for combinatorial genetic screens. Nat. Biotechnol. 36, 179–189 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. DeWeirdt, P. C. et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat. Biotechnol. 39, 94–104 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI–D CRISPR effectors. Cell 173, 665–676.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167, 1883–1896.e15 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G. C. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell 66, 285–299.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim, D. et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat. Biotechnol. 34, 863–868 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Kleinstiver, B. P. et al. Genome-wide specificities of CRISPR–Cas Cpf1 nucleases in human cells. Nat. Biotechnol. 34, 869–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chavez, A. et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13, 563–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Kurt, I. C. et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41–46 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Xu, X. et al. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2, 16009 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kearns, N. A. et al. Functional annotation of native enhancers with a Cas9–histone demethylase fusion. Nat. Methods 12, 401–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, F. et al. Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnol. Adv. 37, 708–729 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Abudayyeh, O. O. et al. A cytosine deaminase for programmable single-base RNA editing. Science 365, 382–386 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rudalska, R. et al. In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer. Nat. Med. 20, 1138–1146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Weber, J. et al. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc. Natl. Acad. Sci. USA. 112, 13982–13987 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kim, M. J. & Ahituv, N. The hydrodynamic tail vein assay as a tool for the study of liver promoters and enhancers. Methods Mol. Biol. 1015, 279–289 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hubner, E. K. et al. Constitutive and inducible systems for genetic in vivo modification of mouse hepatocytes using hydrodynamic tail vein injection. J. Vis. Exp. 2, 56613 (2018).

    Google Scholar 

  127. Sands, M. S. AAV-mediated liver-directed gene therapy. Methods Mol. Biol. 807, 141–157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang, G. et al. Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR-mediated direct in vivo screening. Sci. Adv. 4, eaao5508 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Kim, M. et al. Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci. Adv. 7, eabf4398 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ranzani, M. et al. Lentiviral vector-based insertional mutagenesis identifies genes associated with liver cancer. Nat. Methods 10, 155–161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chiou, S. H. et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev. 29, 1576–1585 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Quirin, K. A. et al. Safety and efficacy of AAV retrograde pancreatic ductal gene delivery in normal and pancreatic cancer mice. Mol. Ther. Methods Clin. Dev. 8, 8–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. DuPage, M., Dooley, A. L. & Jacks, T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat. Protoc. 4, 1064–1072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Blasco, R. B. et al. Simple and rapid invivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep. 9, 1219–1227 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Sanchez-Rivera, F. J. et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516, 428–431 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Limberis, M. P., Vandenberghe, L. H., Zhang, L., Pickles, R. J. & Wilson, J. M. Transduction efficiencies of novel AAV vectors in mouse airway epithelium in vivo and human ciliated airway epithelium in vitro. Mol. Ther. 17, 294–301 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Katz, M. G. et al. Targeted gene delivery through the respiratory system: rationale for intratracheal gene transfer. J. Cardiovasc. Dev. Dis. 6, 8 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  138. Chow, M. Y. T., Chang, R. Y. K. & Chan, H.-K. Inhalation delivery technology for genome-editing of respiratory diseases. Adv. Drug Deliv. Rev. 168, 217–228 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Aschauer, D. F., Kreuz, S. & Rumpel, S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS ONE. 8, (2013).

  140. Chow, R. D. et al. AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nat. Neurosci. 20, 1329–1341 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Humbel, M. et al. Maximizing lentiviral vector gene transfer in the CNS. Gene Ther. 28, 75–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Passini, M. A. et al. Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of β-glucuronidase-deficient mice. J. Virol. 77, 7034–7040 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shinmyo, Y. et al. CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation OPEN. Sci. Rep. 6, 2061 (2016).

    Article  CAS  Google Scholar 

  144. Klatt, D. et al. Competitive sgRNA screen identifies p38 MAPK as a druggable target to improve HSPC engraftment. Cells 9, 2194 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  145. Pan, D. et al. Biodistribution and toxicity studies of VSVG-pseudotyped lentiviral vector after intravenous administration in mice with the observation of in vivo transduction of bone marrow. Mol. Ther. 6, 19–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Lang, J. F., Toulmin, S. A., Brida, K. L., Eisenlohr, L. C. & Davidson, B. L. Standard screening methods underreport AAV-mediated transduction and gene editing. Nat. Commun. 10, 3415 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Annunziato, S. et al. Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev. 30, 1470–1480 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wagner, S., Thresher, R., Bland, R. & Laible, G. Adeno-associated-virus-mediated transduction of the mammary gland enables sustained production of recombinant proteins in milk. Sci. Rep. 5, 15115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Rubin, J. D., Nguyen, T. V., Allen, K. L., Ayasoufi, K. & Barry, M. A. Comparison of gene delivery to the kidney by adenovirus, adeno-associated virus, and lentiviral vectors after intravenous and direct kidney injections. Hum. Gene Ther. 30, 1559–1571 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Picconi, J. L. et al. Kidney-specific expression of GFP by in-utero delivery of pseudotyped adeno-associated virus 9. Mol. Ther. Methods Clin. Dev. 1, 14014 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Thai, H. B. D. et al. Kidney-Targeted cytosolic delivery of siRNA using a small-sized mirror DNA tetrahedron for enhanced potency. ACS Cent. Sci. 6, 2250–2258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hoa, O. et al. Imaging and manipulating pituitary function in the awake mouse. Endocrinology 160, 2271–2281 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Balmayor, E. R. & van Griensven, M. Gene therapy for bone engineering. Front. Bioeng. Biotechnol. 3, 9 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Madry, H., Orth, P. & Cucchiarini, M. Gene therapy for cartilage repair. Cartilage 2, 201–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ain, Q. U., Campos, E. V. R., Huynh, A., Witzigmann, D. & Hedtrich, S. Gene delivery to the skin – how far have we come? Trends Biotechnol. 39, 474–487 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to colleagues whose work was not acknowledged owing to space limitations. C.J.B. is funded by the Max-Eder Program of Deutsche Krebshilfe (70113377) and The Care for Rare Foundation. D.S. is supported by the German Cancer Consortium (DKTK), Deutsche Forschungsgemeinschaft (DFG SA 1374/4-2, SFB 1321 Project-ID 329628492 P06, P11 and S01 and SFB 1371 Project-ID 395357507 P12) and the European Research Council (ERC CoG No. 648521). R.R. receives funds from the Deutsche Krebshilfe (70114314), the German Research Foundation (1629/4-1; SFB1321) and the European Research Council (Consolidator Grant 819642 PACA- MET and MSCA- ITN- ETN 861196).

Author information

Authors and Affiliations

Authors

Contributions

C.J.B., A.C.A., D.S. and R.R. all researched data for the article, provided a substantial contribution to discussions of the content and contributed to writing the article and to the review and/or editing of the manuscript before submission.

Corresponding authors

Correspondence to Christian J. Braun or Roland Rad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Kristin Knouse and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references

Braun, C. J. et al. Proc. Natl. Acad. Sci. USA. 113, E3892–E3900 (2016): https://doi.org/10.1073/pnas.1600582113

Maresch, R. et al. Nat. Commun. 7, 10770 (2016): https://doi.org/10.1038/ncomms10770

Weber, J. et al. Proc. Natl. Acad. Sci. USA. 112, 13982–13987 (2015): https://doi.org/10.1073/pnas.1512392112

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Supplementary Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, C.J., Adames, A.C., Saur, D. et al. Tutorial: design and execution of CRISPR in vivo screens. Nat Protoc 17, 1903–1925 (2022). https://doi.org/10.1038/s41596-022-00700-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00700-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer