Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Global mapping of RNA G-quadruplexes (G4-RNAs) using G4RP-seq

Abstract

Guanine-rich RNAs can fold into four-stranded structures, termed G-quadruplexes (G4-RNAs), and participate in a wide range of biological processes. Here we describe in detail a G4-RNA-specific precipitation (G4RP) protocol, which enables the transcriptomic profiling of G4-RNAs. The G4RP protocol consists of a chemical cross-linking step, followed by affinity capture with a G4-specific probe, BioTASQ. G4RP can be coupled with sequencing to capture a comprehensive global snapshot of folded G4-RNAs. This method can also be used to profile induced changes (i.e., through G4 ligand treatments) within the G4-RNA transcriptome. The entire protocol can be completed in 1–2 weeks and can be scaled up or down depending on the specific experimental goals. In addition to the protocol details, we also provide here a guide for optimization in different laboratory setups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of G4RP.
Fig. 2: Expected results from G4RP.
Fig. 3: Expected results from G4RP-seq.

Similar content being viewed by others

Data availability

All relevant data are available upon request. The G4RP-qPCR dataset (Fig. 2) is publicly available on FigShare (https://doi.org/10.6084/m9.figshare.16684870). The raw sequencing data used in the examples shown in Fig. 3 in this protocol are publicly available and accessible at GSE112898. These raw data are part of the dataset used in ref. 16.

References

  1. Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K. & Neidle, S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 34, 5402–5415 (2006).

  2. Spiegel, J., Adhikari, S. & Balasubramanian, S. The structure and function of DNA G-quadruplexes. Trends Chem. 2, 123–136 (2020).

  3. Rhodes, D. & Lipps, H. J. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 43, 8627–8637 (2015).

  4. Fay, M. M., Lyons, S. M. & Ivanov, P. RNA G-quadruplexes in biology: principles and molecular mechanisms. J. Mol. Biol. 429, 2127–2147 (2017).

    Article  CAS  Google Scholar 

  5. Marsico, G. et al. Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res. 47, 3862–3874 (2019).

    Article  CAS  Google Scholar 

  6. Maizels, N. G4‐associated human diseases. EMBO Rep. 16, 910–922 (2015).

    Article  CAS  Google Scholar 

  7. Raguseo, F., Chowdhury, S., Minard, A. & Di Antonio, M. Chemical-biology approaches to probe DNA and RNA G-quadruplex structures in the genome. Chem. Commun. 56, 1317–1324 (2020).

    Article  CAS  Google Scholar 

  8. Puig Lombardi, E. & Londoño-Vallejo, A. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res. 48, 1603 (2019).

  9. Monchaud, D. Quadruplex detection in human cells. Annu. Rep. Med. Chem. https://doi.org/10.1016/bs.armc.2020.04.007 (2020).

  10. Kwok, C. K. & Merrick, C. J. G-Quadruplexes: prediction, characterization, and biological application. Trends Biotechnol 35, 997–1013 (2017).

    Article  CAS  Google Scholar 

  11. Biffi, G., Tannahill, D., McCafferty, J. & Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5, 182–186 (2013).

    Article  CAS  Google Scholar 

  12. Chambers, V. S. et al. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 33, 877–881 (2015).

    Article  Google Scholar 

  13. Hänsel-Hertsch, R., Spiegel, J., Marsico, G., Tannahill, D. & Balasubramanian, S. Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nat. Protoc. 13, 551–564 (2018).

    Article  Google Scholar 

  14. Zheng, K. et al. Detection of genomic G-quadruplexes in living cells using a small artificial protein. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa841 (2020).

  15. Kwok, C. K., Marsico, G., Sahakyan, A. B., Chambers, V. S. & Balasubramanian, S. rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat. Methods 13, 841–844 (2016).

    Article  CAS  Google Scholar 

  16. Yang, S. Y. et al. Transcriptome-wide identification of transient RNA G-quadruplexes in human cells. Nat. Commun. 9, 4730 (2018).

    Article  Google Scholar 

  17. Mendoza, O., Bourdoncle, A., Boulé, J.-B., Brosh, R. M. & Mergny, J.-L. G-quadruplexes and helicases. Nucleic Acids Res. 44, 1989–2006 (2016).

    Article  CAS  Google Scholar 

  18. Varshney, D., Spiegel, J., Zyner, K., Tannahill, D. & Balasubramanian, S. The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol. 21, 459–474 (2020).

    Article  CAS  Google Scholar 

  19. Ganser, L. R., Kelly, M. L., Herschlag, D. & Al-Hashimi, H. M. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 20, 474–489 (2019).

    Article  CAS  Google Scholar 

  20. Rodriguez, R. et al. A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J. Am. Chem. Soc. 130, 15758–15759 (2008).

    Article  CAS  Google Scholar 

  21. Guo, J. U. & Bartel, D. P. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 353, aaf5371–aaf5371 (2016).

    Article  Google Scholar 

  22. Umar, M. I., Ji, D., Chan, C.-Y. & Kwok, C. K. G-quadruplex-based fluorescent turn-on ligands and aptamers: from development to applications. Molecules 24, 2416 (2019).

    Article  CAS  Google Scholar 

  23. Stefan, L. & Monchaud, D. Applications of guanine quartets in nanotechnology and chemical biology. Nat. Rev. Chem. 3, 650–668 (2019).

    Article  Google Scholar 

  24. Haudecoeur, R., Stefan, L., Denat, F. & Monchaud, D. A model of smart G-quadruplex ligand. J. Am. Chem. Soc. 135, 550–553 (2013).

    Article  CAS  Google Scholar 

  25. Laguerre, A. et al. A twice-as-smart synthetic G-quartet: PyroTASQ is both a smart quadruplex ligand and a smart fluorescent probe. J. Am. Chem. Soc. 136, 12406–12414 (2014).

    Article  CAS  Google Scholar 

  26. Laguerre, A. et al. Visualization of RNA-quadruplexes in live cells. J. Am. Chem. Soc. 137, 8521–8525 (2015).

    Article  CAS  Google Scholar 

  27. Renard, I. et al. Small-molecule affinity capture of DNA/RNA quadruplexes and their identification in vitro and in vivo through the G4RP protocol. Nucleic Acids Res. 47, 5502–5510 (2019).

    Article  CAS  Google Scholar 

  28. Gilbert, C. & Svejstrup, J. Q. RNA immunoprecipitation for determining RNA–protein associations in vivo. Curr. Protoc. Mol. Biol. 75, 27.4.1–27.4.11 (2006).

    Article  Google Scholar 

  29. Müller, S., Kumari, S., Rodriguez, R. & Balasubramanian, S. Small-molecule-mediated G-quadruplex isolation from human cells. Nat. Chem. 2, 1095–1098 (2010).

    Article  Google Scholar 

  30. Neidle, S. Quadruplex nucleic acids as novel therapeutic targets. J. Med. Chem. 59, 5987–6011 (2016).

    Article  CAS  Google Scholar 

  31. Kubota, M., Tran, C. & Spitale, R. C. Progress and challenges for chemical probing of RNA structure inside living cells. Nat. Chem. Biol. 11, 933–941 (2015).

    Article  CAS  Google Scholar 

  32. Sharma, E., Sterne-Weiler, T., O’Hanlon, D. & Blencowe, B. J. Global mapping of human RNA–RNA interactions. Mol. Cell 62, 618–626 (2016).

    Article  CAS  Google Scholar 

  33. Nguyen, T. C. et al. Mapping RNA–RNA interactome and RNA structure in vivo by MARIO. Nat. Commun. 7, 12023 (2016).

    Article  CAS  Google Scholar 

  34. Aw, J. G. A. et al. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell 62, 603–617 (2016).

    Article  CAS  Google Scholar 

  35. Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).

    Article  CAS  Google Scholar 

  36. Ruggiero, E. & Richter, S. N. G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res. 46, 3270–3283 (2018).

  37. Saranathan, N. & Vivekanandan, P. G-quadruplexes: more than just a kink in microbial genomes. Trends Microbiol. 27, 148–163 (2019).

    Article  CAS  Google Scholar 

  38. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  Google Scholar 

  39. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  Google Scholar 

  40. Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2012).

    Article  Google Scholar 

  41. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2014).

    Article  Google Scholar 

  42. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

  43. Aranda, P. S., LaJoie, D. M. & Jorcyk, C. L. Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis 33, 366–369 (2012).

    Article  CAS  Google Scholar 

  44. Goecks, J., Nekrutenko, A. & Taylor, J., Galaxy Team, T. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010).

    Article  Google Scholar 

  45. Read, M. et al. Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc. Natl Acad. Sci. USA 98, 4844–4849 (2001).

  46. Heald, R. A. et al. Antitumor polycyclic acridines. 8.(1) Synthesis and telomerase-inhibitory activity of methylated pentacyclic acridinium salts. J. Med. Chem. 45, 590–597 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Research Reinvestment Funds from the University of British Columbia and Agence Nationale de la Recherche (ANR-17-CE17-0010-01). P. Lejault is warmly acknowledged for her critical analysis of the G4RP protocol and of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.Y.Y., D.M. and J.M.Y.W. designed the experiments. S.Y.Y. and J.M.Y.W. wrote the manuscript with input from D.M.

Corresponding author

Correspondence to Judy M. Y. Wong.

Ethics declarations

Competing interests

D.M. works with Merck-Sigma-Millipore on the commercialization of BioTASQ, the key G4-probe used in this protocol. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Catherine Merrick and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Yang, S. et al. Nat. Commun. 9, 4730 (2018): https://doi.org/10.1038/s41467-018-07224-8

Renard, I. et al. Nucleic Acids Res. 47, 5502–5510 (2019): https://doi.org/10.1093/nar/gkz215

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S.Y., Monchaud, D. & Wong, J.M.Y. Global mapping of RNA G-quadruplexes (G4-RNAs) using G4RP-seq. Nat Protoc 17, 870–889 (2022). https://doi.org/10.1038/s41596-021-00671-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00671-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing