Abstract
Guanine-rich RNAs can fold into four-stranded structures, termed G-quadruplexes (G4-RNAs), and participate in a wide range of biological processes. Here we describe in detail a G4-RNA-specific precipitation (G4RP) protocol, which enables the transcriptomic profiling of G4-RNAs. The G4RP protocol consists of a chemical cross-linking step, followed by affinity capture with a G4-specific probe, BioTASQ. G4RP can be coupled with sequencing to capture a comprehensive global snapshot of folded G4-RNAs. This method can also be used to profile induced changes (i.e., through G4 ligand treatments) within the G4-RNA transcriptome. The entire protocol can be completed in 1–2 weeks and can be scaled up or down depending on the specific experimental goals. In addition to the protocol details, we also provide here a guide for optimization in different laboratory setups.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All relevant data are available upon request. The G4RP-qPCR dataset (Fig. 2) is publicly available on FigShare (https://doi.org/10.6084/m9.figshare.16684870). The raw sequencing data used in the examples shown in Fig. 3 in this protocol are publicly available and accessible at GSE112898. These raw data are part of the dataset used in ref. 16.
References
Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K. & Neidle, S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 34, 5402–5415 (2006).
Spiegel, J., Adhikari, S. & Balasubramanian, S. The structure and function of DNA G-quadruplexes. Trends Chem. 2, 123–136 (2020).
Rhodes, D. & Lipps, H. J. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 43, 8627–8637 (2015).
Fay, M. M., Lyons, S. M. & Ivanov, P. RNA G-quadruplexes in biology: principles and molecular mechanisms. J. Mol. Biol. 429, 2127–2147 (2017).
Marsico, G. et al. Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res. 47, 3862–3874 (2019).
Maizels, N. G4‐associated human diseases. EMBO Rep. 16, 910–922 (2015).
Raguseo, F., Chowdhury, S., Minard, A. & Di Antonio, M. Chemical-biology approaches to probe DNA and RNA G-quadruplex structures in the genome. Chem. Commun. 56, 1317–1324 (2020).
Puig Lombardi, E. & Londoño-Vallejo, A. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res. 48, 1603 (2019).
Monchaud, D. Quadruplex detection in human cells. Annu. Rep. Med. Chem. https://doi.org/10.1016/bs.armc.2020.04.007 (2020).
Kwok, C. K. & Merrick, C. J. G-Quadruplexes: prediction, characterization, and biological application. Trends Biotechnol 35, 997–1013 (2017).
Biffi, G., Tannahill, D., McCafferty, J. & Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5, 182–186 (2013).
Chambers, V. S. et al. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 33, 877–881 (2015).
Hänsel-Hertsch, R., Spiegel, J., Marsico, G., Tannahill, D. & Balasubramanian, S. Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nat. Protoc. 13, 551–564 (2018).
Zheng, K. et al. Detection of genomic G-quadruplexes in living cells using a small artificial protein. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa841 (2020).
Kwok, C. K., Marsico, G., Sahakyan, A. B., Chambers, V. S. & Balasubramanian, S. rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat. Methods 13, 841–844 (2016).
Yang, S. Y. et al. Transcriptome-wide identification of transient RNA G-quadruplexes in human cells. Nat. Commun. 9, 4730 (2018).
Mendoza, O., Bourdoncle, A., Boulé, J.-B., Brosh, R. M. & Mergny, J.-L. G-quadruplexes and helicases. Nucleic Acids Res. 44, 1989–2006 (2016).
Varshney, D., Spiegel, J., Zyner, K., Tannahill, D. & Balasubramanian, S. The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol. 21, 459–474 (2020).
Ganser, L. R., Kelly, M. L., Herschlag, D. & Al-Hashimi, H. M. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 20, 474–489 (2019).
Rodriguez, R. et al. A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J. Am. Chem. Soc. 130, 15758–15759 (2008).
Guo, J. U. & Bartel, D. P. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 353, aaf5371–aaf5371 (2016).
Umar, M. I., Ji, D., Chan, C.-Y. & Kwok, C. K. G-quadruplex-based fluorescent turn-on ligands and aptamers: from development to applications. Molecules 24, 2416 (2019).
Stefan, L. & Monchaud, D. Applications of guanine quartets in nanotechnology and chemical biology. Nat. Rev. Chem. 3, 650–668 (2019).
Haudecoeur, R., Stefan, L., Denat, F. & Monchaud, D. A model of smart G-quadruplex ligand. J. Am. Chem. Soc. 135, 550–553 (2013).
Laguerre, A. et al. A twice-as-smart synthetic G-quartet: PyroTASQ is both a smart quadruplex ligand and a smart fluorescent probe. J. Am. Chem. Soc. 136, 12406–12414 (2014).
Laguerre, A. et al. Visualization of RNA-quadruplexes in live cells. J. Am. Chem. Soc. 137, 8521–8525 (2015).
Renard, I. et al. Small-molecule affinity capture of DNA/RNA quadruplexes and their identification in vitro and in vivo through the G4RP protocol. Nucleic Acids Res. 47, 5502–5510 (2019).
Gilbert, C. & Svejstrup, J. Q. RNA immunoprecipitation for determining RNA–protein associations in vivo. Curr. Protoc. Mol. Biol. 75, 27.4.1–27.4.11 (2006).
Müller, S., Kumari, S., Rodriguez, R. & Balasubramanian, S. Small-molecule-mediated G-quadruplex isolation from human cells. Nat. Chem. 2, 1095–1098 (2010).
Neidle, S. Quadruplex nucleic acids as novel therapeutic targets. J. Med. Chem. 59, 5987–6011 (2016).
Kubota, M., Tran, C. & Spitale, R. C. Progress and challenges for chemical probing of RNA structure inside living cells. Nat. Chem. Biol. 11, 933–941 (2015).
Sharma, E., Sterne-Weiler, T., O’Hanlon, D. & Blencowe, B. J. Global mapping of human RNA–RNA interactions. Mol. Cell 62, 618–626 (2016).
Nguyen, T. C. et al. Mapping RNA–RNA interactome and RNA structure in vivo by MARIO. Nat. Commun. 7, 12023 (2016).
Aw, J. G. A. et al. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell 62, 603–617 (2016).
Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).
Ruggiero, E. & Richter, S. N. G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res. 46, 3270–3283 (2018).
Saranathan, N. & Vivekanandan, P. G-quadruplexes: more than just a kink in microbial genomes. Trends Microbiol. 27, 148–163 (2019).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2012).
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2014).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Aranda, P. S., LaJoie, D. M. & Jorcyk, C. L. Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis 33, 366–369 (2012).
Goecks, J., Nekrutenko, A. & Taylor, J., Galaxy Team, T. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010).
Read, M. et al. Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc. Natl Acad. Sci. USA 98, 4844–4849 (2001).
Heald, R. A. et al. Antitumor polycyclic acridines. 8.(1) Synthesis and telomerase-inhibitory activity of methylated pentacyclic acridinium salts. J. Med. Chem. 45, 590–597 (2002).
Acknowledgements
This work is supported by the Research Reinvestment Funds from the University of British Columbia and Agence Nationale de la Recherche (ANR-17-CE17-0010-01). P. Lejault is warmly acknowledged for her critical analysis of the G4RP protocol and of the manuscript.
Author information
Authors and Affiliations
Contributions
S.Y.Y., D.M. and J.M.Y.W. designed the experiments. S.Y.Y. and J.M.Y.W. wrote the manuscript with input from D.M.
Corresponding author
Ethics declarations
Competing interests
D.M. works with Merck-Sigma-Millipore on the commercialization of BioTASQ, the key G4-probe used in this protocol. The remaining authors declare no competing interests.
Peer review
Peer review information
Nature Protocols thanks Catherine Merrick and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Key references using this protocol
Yang, S. et al. Nat. Commun. 9, 4730 (2018): https://doi.org/10.1038/s41467-018-07224-8
Renard, I. et al. Nucleic Acids Res. 47, 5502–5510 (2019): https://doi.org/10.1093/nar/gkz215
Rights and permissions
About this article
Cite this article
Yang, S.Y., Monchaud, D. & Wong, J.M.Y. Global mapping of RNA G-quadruplexes (G4-RNAs) using G4RP-seq. Nat Protoc 17, 870–889 (2022). https://doi.org/10.1038/s41596-021-00671-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41596-021-00671-6
This article is cited by
-
G-quadruplexes from non-coding RNAs
Journal of Molecular Medicine (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.