Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging

Abstract

The detection of cancer biomarkers in histological samples and blood is of paramount importance for clinical diagnosis. Current methods are limited in terms of sensitivity, hindering early detection of disease. We have overcome the shortcomings of currently available staining and fluorescence labeling methods by taking an integrative approach to establish photon-upconversion nanoparticles (UCNP) as a powerful platform for cancer detection. These nanoparticles are readily synthesized in different sizes to yield efficient and tunable short-wavelength light emission under near-infrared excitation, which eliminates optical background interference of the specimen. Here we present a protocol for the synthesis of UCNPs by high-temperature co-precipitation or seed-mediated growth by thermal decomposition, surface modification by silica or poly(ethylene glycol) that renders the particles resistant to nonspecific binding, and the conjugation of streptavidin or antibodies for biological detection. To detect blood-based biomarkers, we present an upconversion-linked immunosorbent assay for the analog and digital detection of the cancer marker prostate-specific antigen. When applied to immunocytochemistry analysis, UCNPs enable the detection of the breast cancer marker human epidermal growth factor receptor 2 with a signal-to-background ratio 50-fold higher than conventional fluorescent labels. UCNP synthesis takes 4.5 d, the preparation of the antibody–silica–UCNP conjugate takes 3 d, the streptavidin–poly(ethylene glycol)–UCNP conjugate takes 2–3 weeks, upconversion-linked immunosorbent assay takes 2–4 d and immunocytochemistry takes 8–10 h. The procedures can be performed after standard laboratory training in nanomaterials research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two methods for surface modification and bionconjugation of UCNPs.
Fig. 2: Purification of protein-conjugated UCNPs and analysis of aggregation.
Fig. 3: Workflow of UCNPs synthesis for highly sensitive assays and imaging applications.
Fig. 4: Schemes of two ULISA procedures for the detection of the cancer marker PSA.
Fig. 5: Scheme of immunocytochemical labeling of HER2.
Fig. 6: Apparatus for UCNP synthesis.
Fig. 7: Upconversion detection instruments.
Fig. 8: TEM images and emission spectra of UCNPs obtained by a seed-mediated synthesis.
Fig. 9: Purification of streptavidin–PEG–UCNPs by sucrose gradient centrifugation and aggregation analysis.
Fig. 10: ULISA of PSA.
Fig. 11: ICC based on streptavidin–PEG–neridronate–UCNP labels.

Similar content being viewed by others

Data availability

This article presents representative data that support the procedures. Additional data are available in the supporting research papers (gel electrophoresis74, digital immunoassays34,41 and ICC36). Primary data underlying the figures shown in this protocol are available upon a reasonable request from the corresponding authors. Source data are provided with this paper.

References

  1. Oliveira, H. et al. Critical considerations on the clinical translation of upconversion nanoparticles (ucnps): recommendations from the European Upconversion Network (COST Action CM1403). Adv. Healthc. Mater. 8, 1801233 (2019).

    CAS  Google Scholar 

  2. Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 44, 4743–4768 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, T.-M., Conde, J., Lipiński, T., Bednarkiewicz, A. & Huang, C.-C. Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: prospects in photomedicine. Prog. Mater. Sci. 88, 89–135 (2017).

    Article  CAS  Google Scholar 

  4. Zhou, B., Shi, B., Jin, D. & Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10, 924–936 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, Q., Feng, W., Yang, T., Yi, T. & Li, F. Upconversion luminescence imaging of cells and small animals. Nat. Protoc. 8, 2033–2044 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, F., Deng, R. & Liu, X. Preparation of core–shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nat. Protoc. 9, 1634–1644 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Xing, Y. et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2, 1152–1165 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Cai, W. & Chen, X. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat. Protoc. 3, 89–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Gorris, H. H., Ali, R., Saleh, S. M. & Wolfbeis, O. S. Tuning the dual emission of photon-upconverting nanoparticles for ratiometric multiplexed encoding. Adv. Mater. 23, 1652–1655 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Gorris, H. H. & Wolfbeis, O. S. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew. Chem. Int. Ed. 52, 3584–3600 (2013).

    Article  CAS  Google Scholar 

  12. Hlaváček, A., Křivánková, J., Přikryl, J. & Foret, F. Photon-upconversion barcoding with multiple barcode channels: application for droplet microfluidics. Anal. Chem. 91, 12630–12635 (2019).

    Article  PubMed  Google Scholar 

  13. Hlaváček, A., Křivánková, J., Pizúrová, N., Václavek, T. & Foret, F. Photon-upconversion barcode for monitoring an enzymatic reaction with a fluorescence reporter in droplet microfluidics. Analyst 145, 7718–7723 (2020).

    Article  PubMed  Google Scholar 

  14. Wu, S. et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl Acad. Sci. USA 106, 10917–10921 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gnach, A., Lipinski, T., Bednarkiewicz, A., Rybka, J. & Capobianco, J. A. Upconverting nanoparticles: assessing the toxicity. Chem. Soc. Rev. 44, 1561–1584 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Torresan, M. F. & Wolosiuk, A. Critical aspects on the chemical stability of NaYF4-based upconverting nanoparticles for biomedical applications. ACS Appl. Bio Mater. 4, 1191–1210 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Modlitbová, P. et al. The effects of photon-upconversion nanoparticles on the growth of radish and duckweed: bioaccumulation, imaging, and spectroscopic studies. Chemosphere 225, 723–734 (2019).

    Article  PubMed  Google Scholar 

  18. Haase, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011).

    Article  CAS  Google Scholar 

  19. Zhou, J., Liu, Q., Feng, W., Sun, Y. & Li, F. Upconversion luminescent materials: advances and applications. Chem. Rev. 115, 395–465 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Menyuk, N., Dwight, K. & Pierce, J. W. Nayf4: Yb,Er—an efficient upconversion phosphor. Appl. Phys. Lett. 21, 159–161 (1972).

    Article  CAS  Google Scholar 

  21. Heer, S., Kömpe, K., Güdel, H.-U. & Haase, M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102–2105 (2004).

    Article  CAS  Google Scholar 

  22. Yi, G. et al. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett. 4, 2191–2196 (2004).

    Article  CAS  Google Scholar 

  23. Zeng, J.-H., Su, J., Li, Z.-H., Yan, R.-X. & Li, Y.-D. Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb, Er3+ phosphors of controlled size and morphology. Adv. Mater. 17, 2119–2123 (2005).

    Article  CAS  Google Scholar 

  24. Homann, C. et al. NaYF4:Yb,Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield. Angew. Chem. Int. Ed. 57, 8765–8769 (2018).

    Article  CAS  Google Scholar 

  25. Chen, B., Kong, W., Wang, N., Zhu, G. & Wang, F. Oleylamine-mediated synthesis of small naybf4 nanoparticles with tunable size. Chem. Mater. 31, 4779–4786 (2019).

    Article  CAS  Google Scholar 

  26. Fischer, S., Swabeck, J. K. & Alivisatos, A. P. Controlled isotropic and anisotropic shell growth in β-NaLnF4 nanocrystals induced by precursor injection rate. J. Am. Chem. Soc. 139, 12325–12332 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Arppe, R. et al. Quenching of the upconversion luminescence of NaYF4:Yb3+,Er3+ and NaYF4:Yb3+,Tm3+ nanophosphors by water: the role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale 7, 11746–11757 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Würth, C., Fischer, S., Grauel, B., Alivisatos, A. P. & Resch-Genger, U. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles. J. Am. Chem. Soc. 140, 4922–4928 (2018).

    Article  PubMed  Google Scholar 

  29. Tian, B. et al. Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals. Nat. Commun. 9, 3082 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang, J. et al. Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat. Mater. 13, 157–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Johnson, N. J. J. et al. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 139, 3275–3282 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Hlaváček, A. et al. Rapid single-step upconversion-linked immunosorbent assay for diclofenac. Microchim. Acta 184, 4159–4165 (2017).

    Article  Google Scholar 

  33. Hlaváček, A. et al. Competitive upconversion-linked immunosorbent assay for the sensitive detection of diclofenac. Anal. Chem. 88, 6011–6017 (2016).

    Article  PubMed  Google Scholar 

  34. Farka, Z., Mickert, M. J., Hlaváček, A., Skládal, P. & Gorris, H. H. Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers. Anal. Chem. 89, 11825–11830 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Poláchová, V. et al. Click-conjugated photon-upconversion nanoparticles in an immunoassay for honeybee pathogen Melissococcus plutonius. Nanoscale 11, 8343–8351 (2019).

    Article  PubMed  Google Scholar 

  36. Farka, Z. et al. Surface design of photon-upconversion nanoparticles for high-contrast immunocytochemistry. Nanoscale 12, 8303–8313 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Peltomaa, R. et al. Competitive upconversion-linked immunoassay using peptide mimetics for the detection of the mycotoxin zearalenone. Biosens. Bioelectron. 170, (2020).

  38. Pastucha, M. et al. Upconversion-linked immunoassay for the diagnosis of honeybee disease American foulbrood. IEEE J. Sel. Top. Quantum Electron. 27, 6900311 (2021).

    Article  CAS  Google Scholar 

  39. Kraft, M., Würth, C., Palo, E., Soukka, T. & Resch-Genger, U. Colour-optimized quantum yields of Yb, Tm Co-doped upconversion nanocrystals. Methods Appl. Fluoresc. 7, 024001 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Zhao, J. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 8, 729–734 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Mickert, M. J. et al. Measurement of sub-femtomolar concentrations of prostate-specific antigen through single-molecule counting with an upconversion-linked immunosorbent assay. Anal. Chem. 91, 9435–9441 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Brandmeier, J. C. et al. Effect of particle size and surface chemistry of photon-upconversion nanoparticles on analog and digital immunoassays for cardiac troponin. Adv. Healthc. Mater. 10, 2100506 (2021).

    Article  CAS  Google Scholar 

  43. Sedlmeier, A. & Gorris, H. H. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem. Soc. Rev. 44, 1526–1560 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Andresen, E., Resch-Genger, U. & Schäferling, M. Surface modifications for photon-upconversion-based energy-transfer nanoprobes. Langmuir 35, 5093–5113 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Ghisaidoobe, A. B. T. & Chung, S. J. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques. Int. J. Mol. Sci. 15, 22518–22538 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith, P. K. et al. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85 (1985).

    Article  CAS  PubMed  Google Scholar 

  47. Rimkus, G., Bremer-Streck, S., Grüttner, C., Kaiser, W. A. & Hilger, I. Can we accurately quantify nanoparticle associated proteins when constructing high-affinity MRI molecular imaging probes? Contrast Media Mol. Imaging 6, 119–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Zhu, Y., Zhang, W., Li, L., Wu, C. & Xing, J. Preparation of a mixed-mode silica-based sorbent by click reaction and its application in the determination of primary aromatic amines in environmental water samples. Anal. Methods 6, 2102–2111 (2014).

    Article  CAS  Google Scholar 

  49. Jayawardena, H. S. N., Liyanage, S. H., Rathnayake, K., Patel, U. & Yan, M. Analytical methods for characterization of nanomaterial surfaces. Anal. Chem. 93, 1889–1911 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sapsford, K. E., Tyner, K. M., Dair, B. J., Deschamps, J. R. & Medintz, I. L. Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal. Chem. 83, 4453–4488 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Kostiv, U. et al. Versatile bioconjugation strategies of PEG-modified upconversion nanoparticles for bioanalytical applications. Biomacromolecules 21, 4502–4513 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Wilhelm, S. et al. Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability. Nanoscale 7, 1403–1410 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Dong, A. et al. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 133, 998–1006 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Bogdan, N., Vetrone, F., Ozin, G. A. & Capobianco, J. A. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 11, 835–840 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Sun, Y. et al. A supramolecular self-assembly strategy for upconversion nanoparticle bioconjugation. Chem. Commun. 54, 3851–3854 (2018).

    Article  CAS  Google Scholar 

  56. Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2, 214–221 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Duong, H. T. T. et al. Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles. RSC Adv. 8, 4842–4849 (2018).

    Article  CAS  Google Scholar 

  58. Boyer, J.-C., Manseau, M.-P., Murray, J. I. & van Veggel, F. C. J. M. Surface modification of upconverting NaYF4 nanoparticles with PEG−phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir 26, 1157–1164 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Cao, P. et al. Improving lanthanide nanocrystal colloidal stability in competitive aqueous buffer solutions using multivalent PEG-phosphonate ligands. Langmuir 28, 12861–12870 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Li, L.-L., Wu, P., Hwang, K. & Lu, Y. An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J. Am. Chem. Soc. 135, 2411–2414 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cao, Y., Yang, Y., Shan, Y. & Huang, Z. One-pot and facile fabrication of hierarchical branched Pt–Cu nanoparticles as excellent electrocatalysts for direct methanol fuel cells. ACS Appl. Mater. Interfaces 8, 5998–6003 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Kostiv, U. et al. A simple neridronate-based surface coating strategy for upconversion nanoparticles: highly colloidally stable 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale 9, 16680–16688 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Vozlič, M. et al. Formation of phosphonate coatings for improved chemical stability of upconverting nanoparticles under physiological conditions. Dalton Trans. 50, 6588–6597 (2021).

    Article  PubMed  Google Scholar 

  64. Kostiv, U. et al. Monodisperse core–shell NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-GGGRGDSGGGY-NH2 nanoparticlesexcitable at 808 and 980 nm: design, surface engineering, and application in life sciences. Front. Chem. 8, 497 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kostiv, U. et al. Highly colloidally stable trimodal 125 I-radiolabeled PEG-neridronate-coated upconversion/magnetic bioimaging nanoprobes. Sci. Rep. 10, 20016 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Palo, E. et al. Effective shielding of NaYF4:Yb3+,Er3+ upconverting nanoparticles in aqueous environments using layer-by-layer assembly. Langmuir 34, 7759–7766 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, L.-L. et al. Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes. Angew. Chem. Int. Ed. 51, 6121–6125 (2012).

    Article  CAS  Google Scholar 

  68. Märkl, S., Schroter, A. & Hirsch, T. Small and bright water-protected upconversion nanoparticles with long-time stability in complex, aqueous media by phospholipid membrane coating. Nano Lett. 20, 8620–8625 (2020).

    Article  PubMed  Google Scholar 

  69. Beyazit, S. et al. Versatile synthetic strategy for coating upconverting nanoparticles with polymer shells through localized photopolymerization by using the particles as internal light sources. Angew. Chem. Int. Ed. 53, 8919–8923 (2014).

    Article  CAS  Google Scholar 

  70. Hlaváček, A., Sedlmeier, A., Skládal, P. & Gorris, H. H. Electrophoretic characterization and purification of silica-coated photon-upconverting nanoparticles and their bioconjugates. ACS Appl. Mater. Interfaces 6, 6930–6935 (2014).

    Article  PubMed  Google Scholar 

  71. Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Article  Google Scholar 

  72. Pisani, C. et al. Experimental separation steps influence the protein content of corona around mesoporous silica nanoparticles. Nanoscale 9, 5769–5772 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Stewart, M. H. et al. Multidentate poly(ethylene glycol) ligands provide colloidal stability to semiconductor and metallic nanocrystals in extreme conditions. J. Am. Chem. Soc. 132, 9804–9813 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Hlaváček, A. et al. Large-scale purification of photon-upconversion nanoparticles by gel electrophoresis for analogue and digital bioassays. Anal. Chem. 91, 1241–1246 (2019).

    Article  PubMed  Google Scholar 

  75. Chen, G. et al. High-purity separation of gold nanoparticle dimers and trimers. J. Am. Chem. Soc. 131, 4218–4219 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Hermanson, G. Bioconjugate Techniques (Academic Press, 2008).

  77. Anderson, N. L. & Anderson, N. G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteom. 1, 845–867 (2002).

    Article  CAS  Google Scholar 

  78. Cheng, H. et al. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS ONE 6, e17745 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Banys-Paluchowski, M., Krawczyk, N. & Fehm, T. Potential role of circulating tumor cell detection and monitoring in breast cancer: a review of current evidence. Front. Oncol. 6, (2016).

  80. Rajagopal, C. & Harikumar, K. B. The origin and functions of exosomes in cancer. Front. Oncol. 8, (2018).

  81. Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).

    Article  PubMed  Google Scholar 

  82. Hayes, J. H. & Barry, M. J. Screening for prostate cancer with the prostate-specific antigen test: a review of current evidence. JAMA 311, 1143–1149 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Stephan, C., Jung, K. & Ralla, B. Current biomarkers for diagnosing of prostate cancer. Future Oncol. Lond. Engl. 11, 2743–2755 (2015).

    Article  CAS  Google Scholar 

  84. Thaxton, C. S. et al. Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc. Natl. Acad. Sci. USA 106, 18437–18442 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Farka, Z. et al. Advances in optical single-molecule detection: en route to supersensitive bioaffinity assays. Angew. Chem. Int. Ed. 59, 10746–10773 (2020).

    Article  CAS  Google Scholar 

  87. Tuffaha, M. S. A., Guski, H. & Kristiansen, G. Immunohistochemistry in Tumor Diagnostics (Springer, 2018).

  88. Titford, M. The long history of hematoxylin. Biotech. Histochem. 80, 73–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Stack, E. C., Wang, C., Roman, K. A. & Hoyt, C. C. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70, 46–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Coons, A. H., Creech, H. J., Jones, R. N. & Berliner, E. The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J. Immunol. 45, 159–170 (1942).

    CAS  Google Scholar 

  91. Yezhelyev, M. V. et al. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 7, 657–667 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Zijlmans, H. J. M. A. A. et al. Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. Anal. Biochem. 267, 30–36 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, M. et al. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles. ACS Nano 3, 1580–1586 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Zhou, L. et al. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers. Nat. Commun. 6, 6938 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, C. et al. Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes. Nanoscale 8, 12579–12587 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. He, H. et al. Bispecific antibody-functionalized upconversion nanoprobe. Anal. Chem. 90, 3024–3029 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Dawood, S., Broglio, K., Buzdar, A. U., Hortobagyi, G. N. & Giordano, S. H. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. J. Clin. Oncol. 28, 92–98 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Burris, H. A. et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J. Clin. Oncol. 29, 398–405 (2010).

    Article  PubMed  Google Scholar 

  99. Swain, S. M. et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 14, 461–471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ansari, A. A., Parchur, A. K., Thorat, N. D. & Chen, G. New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine. Coord. Chem. Rev. 440, 213971 (2021).

    Article  CAS  Google Scholar 

  101. Sedlmeier, A. et al. Highly sensitive laser scanning of photon-upconverting nanoparticles on a macroscopic scale. Anal. Chem. 88, 1835–1841 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. He, W. et al. Upconversion nanoparticles-based lateral flow immunoassay for point-of-care diagnosis of periodontitis. Sens. Actuators B Chem. 334, 129673 (2021).

    Article  CAS  Google Scholar 

  103. Guo, X. et al. Single-line flow assay platform based on orthogonal emissive upconversion nanoparticles. Anal. Chem. 93, 3010–3017 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Ji, T. et al. Background-free chromatographic detection of sepsis biomarker in clinical human serum through near-infrared to near-infrared upconversion immunolabeling. ACS Nano 14, 16864–16874 (2020).

    Article  CAS  Google Scholar 

  105. Peltomaa, R., Benito-Peña, E., Gorris, H. H. & Moreno-Bondi, M. C. Biosensing based on upconversion nanoparticles for food quality and safety applications. Analyst 146, 13–32 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Bhuckory, S. et al. Core or shell? Er3+ FRET donors in upconversion nanoparticles. Eur. J. Inorg. Chem. 2017, 5186–5195 (2017).

    Article  CAS  Google Scholar 

  107. Siefe, C. et al. Sub-20 nm core–shell–shell nanoparticles for bright upconversion and enhanced Förster resonant energy transfer. J. Am. Chem. Soc. 141, 16997–17005 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Resch-Genger, U. & Gorris, H. H. Perspectives and challenges of photon-upconversion nanoparticles—Part I: routes to brighter particles and quantitative spectroscopic studies. Anal. Bioanal. Chem. 409, 5855–5874 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Gorris, H. H. & Resch-Genger, U. Perspectives and challenges of photon-upconversion nanoparticles—Part II: bioanalytical applications. Anal. Bioanal. Chem. 409, 5875–5890 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Chen, X., Peng, D., Ju, Q. & Wang, F. Photon upconversion in core–shell nanoparticles. Chem. Soc. Rev. 44, 1318–1330 (2015).

    Article  PubMed  Google Scholar 

  111. Del Rosal, B. & Jaque, D. Upconversion nanoparticles for in vivo applications: limitations and future perspectives. Methods Appl. Fluoresc. 7, 022001 (2019).

    Article  PubMed  Google Scholar 

  112. Näreoja, T. et al. Ratiometric sensing and imaging of intracellular pH using polyethylenimine-coated photon upconversion nanoprobes. Anal. Chem. 89, 1501–1508 (2017).

    Article  PubMed  Google Scholar 

  113. Zhan, Q. et al. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun. 8, 1058 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Lee, C. et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 589, 230–235 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Li, Z. & Zhang, Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 19, 345606 (2008).

    Article  PubMed  Google Scholar 

  117. Podhorodecki, A. et al. Percolation limited emission intensity from upconverting NaYF4:Yb3+,Er3+ nanocrystals—a single nanocrystal optical study. Nanoscale 10, 21186–21196 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Presolski, S. I., Hong, V. P. & Finn, M. G. Copper-catalyzed azide–alkyne click chemistry for bioconjugation. Curr. Protoc. Chem. Biol. 3, 153–162 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Jin, D. et al. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods 15, 415–423 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Lu, J. et al. One-step protein conjugation to upconversion nanoparticles. Anal. Chem. 87, 10406–10413 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Macpherson, S. A., Webber, G. B. & Moreno-Atanasio, R. Aggregation of nanoparticles in high ionic strength suspensions: effect of Hamaker constant and particle concentration. Adv. Powder Technol. 23, 478–484 (2012).

    Article  CAS  Google Scholar 

  122. Lahtinen, S. et al. Disintegration of hexagonal NaYF4:Yb3+,Er3+ upconverting nanoparticles in aqueous media: the role of fluoride in solubility equilibrium. J. Phys. Chem. C. 121, 656–665 (2017).

    Article  CAS  Google Scholar 

  123. Crowther, J. R. The ELISA Guidebook (Humana Press, 2008).

  124. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Airy, G. B. On the diffraction of an object-glass with circular aperture. Trans. Camb. Philos. Soc. 5, 283 (1835).

    Google Scholar 

Download references

Acknowledgements

H.H.G. acknowledges support from the German Research Foundation (DFG: GO 1968/ 7–1 (Heisenberg Program) and GO 1968/6–1). A.H. and F.F. acknowledge institutional support grant RVO 68081715. A.H., Z.F., and P.S. acknowledge grant 21-03156S from the Czech Science Foundation. Z.F. and P.S. acknowledge the support of the Ministry of Education, Youth and Sports of the Czech Republic (MEYS CR) under the projects INTER-ACTION (LTAB19011) and CEITEC 2020 (LQ1601). D.H. acknowledges grant 21-04420S from the Czech Science Foundation. We thank P. Bouchal and P. Bouchalová for providing cell slides, N. Velychkivska for NMR measurements and V. Vykoukal for taking TEM images.

Author information

Authors and Affiliations

Authors

Contributions

A.H., Z.F., M.J.M., U.K. and J.C.B. contributed with experiments, A.H., Z.F., M.J.M., U.K., J.C.B. and H.H.G. wrote the manuscript, and P.S., F.F., D.H. and H.H.G. supervised.

Corresponding authors

Correspondence to Antonín Hlaváček, Zdeněk Farka or Hans H. Gorris.

Ethics declarations

Competing interests

M.J.M. was a graduate student in the Gorris group when he completed the work described in the paper and is now employed by Lumito, a company that is pursuing applications of UCNPs in IHC.

Peer review

Peer review information

Nature Protocols thanks Jiajia Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Farka, Z. et al. Nanoscale 12, 8303–8313 (2020): https://doi.org/10.1039/c9nr10568a

Mickert, M. J. et al. Anal. Chem. 91, 9435–9441 (2019): https://doi.org/10.1021/acs.analchem.9b02872

Hlaváček, A. et al. Anal. Chem. 91, 1241–1246 (2019): https://doi.org/10.1021/acs.analchem.8b04488

Supplementary information

Supplementary Information

Supplementary Table 1 and Supplementary Figs. 1–8.

Reporting Summary

Supplementary Table 2

Computation of chemicals for coating UCNPs with a carboxylated silica shell

Source data

Source Data Fig. 10

Unprocessed micrographs

Source Data Fig. 11

Unprocessed micrograph

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hlaváček, A., Farka, Z., Mickert, M.J. et al. Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. Nat Protoc 17, 1028–1072 (2022). https://doi.org/10.1038/s41596-021-00670-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00670-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer