Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generation of CRISPR–Cas9-mediated genetic knockout human intestinal tissue–derived enteroid lines by lentivirus transduction and single-cell cloning

Abstract

Human intestinal tissue–derived enteroids (HIEs; also called organoids) are a powerful ex vivo model for gastrointestinal research. Genetic modification of these nontransformed cultures allows new insights into gene function and biological processes involved in intestinal diseases as well as gastrointestinal and donor segment-specific function. Here we provide a detailed technical pipeline and protocol for using the CRISPR–Cas9 genome editing system to knock out a gene of interest specifically in HIEs by lentiviral transduction and single-cell cloning. This protocol differs from a previously published alternative using electroporation of human colonoids to deliver piggyback transposons or CRISPR–Cas9 constructs, as this protocol uses a modified, fused LentiCRISPRv2–small-guiding RNA to express Cas9 and small-guiding RNA in a lentivirus. The protocol also includes the steps of gene delivery and subsequent single-cell cloning of the knockout cells as well as verification of clones and sequence identification of the mutation sites to establish knockout clones. An overview flowchart, step-by-step guidelines and troubleshooting suggestions are provided to aid the researcher in obtaining the genetic knockout HIE line within 2–3 months. In this protocol, we further describe how to use HIEs as an ex vivo model to assess host restriction factors for viral replication (using human norovirus replication as an example) by knocking out host attachment factors or innate immunity genes. Other applications are discussed to broaden the utility of this system, for example, to generate knockin or conditional knockout HIE lines to investigate the function of essential genes in many biological processes including other types of organoids.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The steps of lentivirus packaging and transduction.
Fig. 2: The 293FT cells during lentivirus packaging.
Fig. 3: HIE morphologies during transduction and puromycin selection.
Fig. 4: The selection criteria for single-cell HIE clones.
Fig. 5: The comparison between KO and wild-type sequencing results.
Fig. 6: STAT1-KO HIE cells are more susceptible to GII.3 infection.

Similar content being viewed by others

Data availability

The data are available from the authors upon request. Source data from Fig. 6 were generated using this protocol and were published in ref. 12. Source data are provided with this paper.

References

  1. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Heo, I. et al. Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nat. Microbiol. 3, 814–823 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Middendorp, S. et al. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 32, 1083–1091 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Foulke-Abel, J. et al. Human enteroids as an ex-vivo model of host–pathogen interactions in the gastrointestinal tract. Exp. Biol. Med. 239, 1124–1134 (2014).

    Article  CAS  Google Scholar 

  5. Rajan, R. et al. Novel segment- and host-specific patterns of enteroaggregative Escherichia coli adherence to human intestinal enteroids. mBio 9, e02419–17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. In, J. G. et al. Human mini-guts: new insights into intestinal physiology and host–pathogen interactions. Nat. Rev. Gastroenterol. Hepatol. 13, 633–642 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zachos, N. C. et al. Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J. Biol. Chem. 291, 3759–3766 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Clevers, H. COVID-19: organoids go viral. Nat. Rev. Mol. Cell Biol. 21, 355–356 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Geurts, M. H., van der Vaart, J., Beumer, J. & Clevers, H. The organoid platform: promises and challenges as tools in the fight against COVID-19. Stem Cell Rep. 16, 412–418 (2021).

    Article  CAS  Google Scholar 

  10. Hares, M. F. et al. Stem cell-derived enteroid cultures as a tool for dissecting host–parasite interactions in the small intestinal epithelium. Parasite Immunol. 43, e12765 (2021).

    Article  PubMed  Google Scholar 

  11. Ettayebi, K. et al. Replication of human noroviruses in stem cell-derived human enteroids. Science 353, 1387–1393 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lin, S. C. et al. Human norovirus exhibits strain-specific sensitivity to host interferon pathways in human intestinal enteroids. Proc. Natl Acad. Sci. USA 117, 23782–23793 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ettayebi, K. et al. New insights and enhanced human norovirus cultivation in human intestinal enteroids. mSphere 6, e01136–20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Murakami, K. et al. Bile acids and ceramide overcome the entry restriction for GII.3 human norovirus replication in human intestinal enteroids. Proc. Natl Acad. Sci. USA 117, 1700–1710 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haga, K. et al. Genetic manipulation of human intestinal enteroids demonstrates the necessity of a functional fucosyltransferase 2 gene for secretor-dependent human norovirus infection. mBio 11, e00251–20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429–5433 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    Article  PubMed  CAS  Google Scholar 

  21. Paques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Urnov, F. D., Rebar, E. J., Holmes, M. C., S., H. & Zhang, P. D. Gregory, Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Moore, J. K. & Haber, J. E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 2164–2173 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Durai, S. et al. Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 33, 5978–5990 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Chang-Graham, A. L. et al. Rotavirus induces intercellular calcium waves through ADP signaling. Science 370, eabc3621 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Giuliano, C. J., Lin, A., Girish, V. & Sheltzer, J. M. Generating single cell-derived knockout clones in mammalian cells with CRISPR/Cas9. Curr. Protoc. Mol. Biol. 128, e100 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Michels, B. E. et al. Human colon organoids reveal distinct physiologic and oncogenic Wnt responses. J. Exp. Med. 216, 704–720 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ousterout, D. G. et al. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat. Commun. 6, 6244 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Shimokawa, M. et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature 545, 187–192 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Artegiani, B. et al. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing. Nat. Cell Biol. 22, 321–331 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Hendriks, D., Clevers, H. & Artegiani, B. CRISPR-Cas tools and their application in genetic engineering of human stem cells and organoids. Cell Stem Cell 27, 705–731 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Fujii, M., Matano, M., Nanki, K. & Sato, T. Efficient genetic engineering of human intestinal organoids using electroporation. Nat. Protoc. 10, 1474–1485 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Matano, M. et al. Modeling colorectal cancer using CRISPR–Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Teriyapirom, I., Batista-Rocha, A. S. & Koo, B. K. Genetic engineering in organoids. J. Mol. Med. 99, 555–568 (2021).

    Article  PubMed  Google Scholar 

  37. A. M. Gaebler et al. Universal and efficient electroporation protocol for genetic engineering of gastrointestinal organoids. J. Vis. Exp. https://doi.org/10.3791/60704 (2020).

  38. H. Miyoshi, T. S. Stappenbeck, In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat. Protoc. 8, 2471–2482 (2013).

  39. Drost, J., Artegiani, B. & Clevers, H. The generation of organoids for studying Wnt signaling. Methods Mol. Biol. 1481, 141–159 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. J. F. Van Lidth de Jeude, J. L. Vermeulen, P. S. Montenegro-Miranda, G. R. Van den Brink, J. Heijmans, A protocol for lentiviral transduction and downstream analysis of intestinal organoids. J. Vis. Exp. https://doi.org/10.3791/52531 (2015).

  41. A. Merenda et al. A protocol for multiple gene knockout in mouse small intestinal organoids using a CRISPR-concatemer. J. Vis. Exp. https://doi.org/10.3791/55916 (2017).

  42. Zhang, J., Chen, L., Zhang, J. & Wang, Y. Drug inducible CRISPR/Cas systems. Comput. Struct. Biotechnol. J. 17, 1171–1177 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, Y. et al. Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell 17, 233–244 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Hay, E. A. et al. An analysis of possible off target effects following CAS9/CRISPR targeted deletions of neuropeptide gene enhancers from the mouse genome. Neuropeptides 64, 101–107 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saxena, K. et al. Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J. Virol. 90, 43–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Jiang, X., Wang, M., Graham, D. Y. & Estes, M. K. Expression self-assembly and antigenicity of the Norwalk virus capsid protein. J. Virol. 66, 6527–6532 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. VanDussen, K. L., Sonnek, N. M. & Stappenbeck, T. S. L-WRN conditioned medium for gastrointestinal epithelial stem cell culture shows replicable batch-to-batch activity levels across multiple research teams. Stem Cell Res. 37, 101430 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sastry, L., Johnson, T., Hobson, M. J., Smucker, B. & Cornetta, K. Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther. 9, 1155–1162 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Barczak, W., Suchorska, W., Rubiś, B. & Kulcenty, K. Universal real-time PCR-based assay for lentiviral titration. Mol. Biotechnol. 57, 195–200 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Joung, J. et al. Genome-scale CRISPR–Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Loisy, F. et al. Real-time RT-PCR for norovirus screening in shellfish. J. Virol. Methods 123, 1–7 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Lee and the Cell-Based Assay Screening Service (C-BASS) Core in BCM for lentivirus packaging plasmids. This work was supported in part by Public Health Service grants PO1AI057788, U19AI116497, U19AI144297, P30DK56338 and contract HHSN2722017000381 from the National Institutes of Health, by The Cancer Prevention Institute of Texas (CPRIT) RP160283—Baylor College of Medicine Comprehensive Cancer Training Program and RP17005, by NIH P30 shared resource grant CA125123, NIEHS grants P30ES030285 and P42ES0327725, and by the John S. Dunn Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.-C.L. and K.H. designed the experiments. S.-C.L. developed the protocol with X.-L.Z. S.-C.L. and X.-L.Z. performed the experiments. S.-C.L., K.H. and M.K.E. wrote the protocol.

Corresponding author

Correspondence to Mary K. Estes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Devanjali Dutta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Lin, S. C. et al. Proc. Natl Acad. Sci. USA 117, 23782–23793 (2020): https://doi.org/10.1073/pnas.2010834117

Haga, K. et al. mBio 11, e00251-20 (2020): https://doi.org/10.1128/mBio.00251-20

Supplementary information

Source data

Source Data Fig. 6

Unprocessed western blots for Fig. 6a and original images for Fig. 6b.

Source Data Fig. 6

Statistical source data for Fig. 6c.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, SC., Haga, K., Zeng, XL. et al. Generation of CRISPR–Cas9-mediated genetic knockout human intestinal tissue–derived enteroid lines by lentivirus transduction and single-cell cloning. Nat Protoc 17, 1004–1027 (2022). https://doi.org/10.1038/s41596-021-00669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00669-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing