Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

dCas9-VPR-mediated transcriptional activation of functionally equivalent genes for gene therapy

Abstract

Many disease-causing genes possess functionally equivalent counterparts, which are often expressed in distinct cell types. An attractive gene therapy approach for inherited disorders caused by mutations in such genes is to transcriptionally activate the appropriate counterpart(s) to compensate for the missing gene function. This approach offers key advantages over conventional gene therapies because it is mutation- and gene size–independent. Here, we describe a protocol for the design, execution and evaluation of such gene therapies using dCas9-VPR. We offer guidelines on how to identify functionally equivalent genes, design and clone single guide RNAs and evaluate transcriptional activation in vitro. Moreover, focusing on inherited retinal diseases, we provide a detailed protocol on how to apply this strategy in mice using dual recombinant adeno-associated virus vectors and how to evaluate its functionality and off-target effects in the target tissue. This strategy is in principle applicable to all organisms that possess functionally equivalent genes suitable for transcriptional activation and addresses pivotal unmet needs in gene therapy with high translational potential. The protocol can be completed in 15–20 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: dCas9-VPR–mediated transcriptional activation of a functionally equivalent gene in mouse photoreceptors.
Fig. 2: Timeline and workflow of experiments.
Fig. 3: AAV tropism for different tissues.
Fig. 4: Constructs required for in vitro and in vivo experiments.
Fig. 5: Anticipated results for a transactivation gene therapy in vitro and in vivo.

Similar content being viewed by others

Data availability

Figure 5 shows example data that were obtained with this protocol. Additional data related to this protocol can be found in the original paper12 or may be requested from the authors. Source data are provided with this paper.

References

  1. Dunbar, C. E. et al. Gene therapy comes of age. Science 359, eaan4672 (2018).

    Article  PubMed  Google Scholar 

  2. Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eid, A., Alshareef, S. & Mahfouz, M. M. CRISPR base editors: genome editing without double-stranded breaks. Biochem. J. 475, 1955–1964 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, M. et al. Targeted base editing in rice with CRISPR/ScCas9 system. Plant Biotechnol. J. 18, 1645–1647 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10, 973–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Böhm, S. et al. A gene therapy for inherited blindness using dCas9-VPR-mediated transcriptional activation. Sci. Adv. 6, eaba5614 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Chavez, A. et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13, 563–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, Z., Yang, H. & Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther. 18, 80–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Zinn, E. & Vandenberghe, L. H. Adeno-associated virus: fit to serve. Curr. Opin. Virol. 8, 90–97 (2014).

    Article  PubMed  Google Scholar 

  19. Chew, W. L. et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moreno, A. M. et al. In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation. Mol. Ther. 26, 1818–1827 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Truong, D. J. et al. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. 43, 6450–6458 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ma, D., Peng, S. & Xie, Z. Integration and exchange of split dCas9 domains for transcriptional controls in mammalian cells. Nat. Commun. 7, 13056 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lamb, T. D. Evolution of phototransduction, vertebrate photoreceptors and retina. Prog. Retin. Eye Res. 36, 52–119 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Fu, Y., Kefalov, V., Luo, D. G., Xue, T. & Yau, K. W. Quantal noise from human red cone pigment. Nat. Neurosci. 11, 565–571 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kefalov, V. J. Rod and cone visual pigments and phototransduction through pharmacological, genetic, and physiological approaches. J. Biol. Chem. 287, 1635–1641 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Sakurai, K. et al. Physiological properties of rod photoreceptor cells in green-sensitive cone pigment knock-in mice. J. Gen. Physiol. 130, 21–40 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shi, G., Yau, K. W., Chen, J. & Kefalov, V. J. Signaling properties of a short-wave cone visual pigment and its role in phototransduction. J. Neurosci. 27, 10084–10093 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liao, H. K. et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1495–1507.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matharu, N. et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363, eaau0629 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Kemaladewi, D. U. et al. A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature 572, 125–130 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Boye, S. E., Boye, S. L., Lewin, A. S. & Hauswirth, W. W. A comprehensive review of retinal gene therapy. Mol. Ther. 21, 509–519 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Keeler, A. M. & Flotte, T. R. Recombinant adeno-associated virus gene therapy in light of Luxturna (and Zolgensma and Glybera): where are we, and how did we get here? Annu. Rev. Virol. 6, 601–621 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dahlman, J. E. et al. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat. Biotechnol. 33, 1159–1161 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kiani, S. et al. Cas9 gRNA engineering for genome editing, activation and repression. Nat. Methods 12, 1051–1054 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Riedmayr, L. et al. A highly efficient dual AAV technology for therapeutic (epi)genome editing applications [abstract]. ASGCT 23rd Annual Meeting, 2020 May 12–15, abstract no. 1472.

  36. Narasimhan, I., Murali, A., Subramanian, K., Ramalingam, S. & Parameswaran, S. Autosomal dominant retinitis pigmentosa with toxic gain of function: mechanisms and therapeutics. Eur. J. Ophthalmol. 31, 304–320 (2021).

    Article  PubMed  Google Scholar 

  37. Lugo-Martinez, J. et al. The loss and gain of functional amino acid residues is a common mechanism causing human inherited disease. PLoS Comput. Biol. 12, e1005091 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li, Y., Zhang, Y., Li, X., Yi, S. & Xu, J. Gain-of-function mutations: an emerging advantage for cancer biology. Trends Biochem. Sci. 44, 659–674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, X. H. & Babu, M. M. Human diseases from gain-of-function mutations in disordered protein regions. Cell 175, 40–42 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Kajiwara, K., Berson, E. L. & Dryja, T. P. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 264, 1604–1608 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Burkard, M. et al. Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel-associated retinopathy. J. Clin. Invest. 128, 5663–5675 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Das, R. G. et al. Variabilities in retinal function and structure in a canine model of cone-rod dystrophy associated with RPGRIP1 support multigenic etiology. Sci. Rep. 7, 12823 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bazaga, A., Leggate, D. & Weisser, H. Genome-wide investigation of gene-cancer associations for the prediction of novel therapeutic targets in oncology. Sci. Rep. 10, 10787 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, D., Zhang, F. & Gao, G. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell 181, 136–150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gallego, C., Goncalves, M. & Wijnholds, J. Novel therapeutic approaches for the treatment of retinal degenerative diseases: focus on CRISPR/Cas-based gene editing. Front. Neurosci. 14, 838 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Seto, M., Weiner, R. L., Dumitrescu, L. & Hohman, T. J. Protective genes and pathways in Alzheimer’s disease: moving towards precision interventions. Mol. Neurodegener. 16, 29 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Harper, A. R., Nayee, S. & Topol, E. J. Protective alleles and modifier variants in human health and disease. Nat. Rev. Genet. 16, 689–701 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Levy, J. M. et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97–110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tornabene, P. et al. Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Sci. Transl. Med. 11, eaav4523 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Carvalho, L. S. et al. Evaluating efficiencies of dual AAV approaches for retinal targeting. Front. Neurosci. 11, 503 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Riviere, C., Danos, O. & Douar, A. M. Long-term expression and repeated administration of AAV type 1, 2 and 5 vectors in skeletal muscle of immunocompetent adult mice. Gene Ther. 13, 1300–1308 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Bennett, J. et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet 388, 661–672 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bainbridge, J. W. et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N. Engl. J. Med. 372, 1887–1897 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. de Castro, E. et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 34, W362–W365 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Concordet, J. P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. al-Ubaidi, M. R. et al. Bilateral retinal and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of the human interphotoreceptor retinoid-binding protein promoter. J. Cell Biol. 119, 1681–1687 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Tan, E. et al. Expression of cone-photoreceptor-specific antigens in a cell line derived from retinal tumors in transgenic mice. Invest. Ophthalmol. Vis. Sci. 45, 764–768 (2004).

    Article  PubMed  Google Scholar 

  59. Cox, J. et al. A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat. Protoc. 4, 698–705 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Palmer, A. E. & Tsien, R. Y. Measuring calcium signaling using genetically targetable fluorescent indicators. Nat. Protoc. 1, 1057–1065 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Modena, M. M., Chawla, K., Misun, P. M. & Hierlemann, A. Smart cell culture systems: integration of sensors and actuators into microphysiological systems. ACS Chem. Biol. 13, 1767–1784 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Becirovic, E. et al. AAV vectors for FRET-based analysis of protein-protein interactions in photoreceptor outer segments. Front. Neurosci. 10, 356 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. DeWeirdt, P. C. et al. Genetic screens in isogenic mammalian cell lines without single cell cloning. Nat. Commun. 11, 752 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fenno, L. E. et al. Targeting cells with single vectors using multiple-feature Boolean logic. Nat. Methods 11, 763–772 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Petrs-Silva, H. et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol. Ther. 17, 463–471 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Dalkara, D. et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci. Transl. Med. 5, 189ra176 (2013).

    Article  Google Scholar 

  67. Khabou, H. et al. Insight into the mechanisms of enhanced retinal transduction by the engineered AAV2 capsid variant -7m8. Biotechnol. Bioeng. 113, 2712–2724 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Jat, P. S., Cepko, C. L., Mulligan, R. C. & Sharp, P. A. Recombinant retroviruses encoding simian virus 40 large T antigen and polyomavirus large and middle T antigens. Mol. Cell. Biol. 6, 1204–1217 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu, J. Preparation, culture, and immortalization of mouse embryonic fibroblasts. Curr. Protoc. Mol. Biol. Ch. 28, Unit 28.1 (2005).

  70. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Vandenberghe, L. H. et al. Efficient serotype-dependent release of functional vector into the culture medium during adeno-associated virus manufacturing. Hum. Gene Ther. 21, 1251–1257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. D’Costa, S. et al. Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR. Mol. Ther. Methods Clin. Dev. 5, 16019 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Becirovic, E. et al. In vivo analysis of disease-associated point mutations unveils profound differences in mRNA splicing of peripherin-2 in rod and cone photoreceptors. PLoS Genet. 12, e1005811 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Murenu, E. et al. A universal protocol for isolating retinal ON bipolar cells across species via fluorescence-activated cell sorting. Mol. Ther. Methods Clin. Dev. 20, 587–600 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jonkman, J., Brown, C. M., Wright, G. D., Anderson, K. I. & North, A. J. Tutorial: guidance for quantitative confocal microscopy. Nat. Protoc. 15, 1585–1611 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Bohm, S. et al. Peripherin-2 and Rom-1 have opposing effects on rod outer segment targeting of retinitis pigmentosa-linked peripherin-2 mutants. Sci. Rep. 7, 2321 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Panagiotopoulos, A. L. et al. Antisense oligonucleotide- and CRISPR-Cas9-mediated rescue of mRNA splicing for a deep intronic CLRN1 mutation. Mol. Ther. Nucleic Acids 21, 1050–1061 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, Z. et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat. Biotechnol. 23, 321–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Bish, L. T. et al. Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum. Gene Ther. 19, 1359–1368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Su, H. et al. AAV serotype 1 mediates more efficient gene transfer to pig myocardium than AAV serotype 2 and plasmid. J. Gene Med. 10, 33–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Xiao, W. et al. Gene therapy vectors based on adeno-associated virus type 1. J. Virol. 73, 3994–4003 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gregorevic, P. et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat. Med. 10, 828–834 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Katwal, A. B. et al. Adeno-associated virus serotype 9 efficiently targets ischemic skeletal muscle following systemic delivery. Gene Ther. 20, 930–938 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sumner-Jones, S. G., Davies, L. A., Varathalingam, A., Gill, D. R. & Hyde, S. C. Long-term persistence of gene expression from adeno-associated virus serotype 5 in the mouse airways. Gene Ther. 13, 1703–1713 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Limberis, M. P., Vandenberghe, L. H., Zhang, L., Pickles, R. J. & Wilson, J. M. Transduction efficiencies of novel AAV vectors in mouse airway epithelium in vivo and human ciliated airway epithelium in vitro. Mol. Ther. 17, 294–301 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Pfeifer, C., Aneja, M. K., Hasenpusch, G. & Rudolph, C. Adeno-associated virus serotype 9-mediated pulmonary transgene expression: effect of mouse strain, animal gender and lung inflammation. Gene Ther. 18, 1034–1042 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Burger, C. et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol. Ther. 10, 302–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Broekman, M. L., Comer, L. A., Hyman, B. T. & Sena-Esteves, M. Adeno-associated virus vectors serotyped with AAV8 capsid are more efficient than AAV-1 or -2 serotypes for widespread gene delivery to the neonatal mouse brain. Neuroscience 138, 501–510 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Dayton, R. D., Wang, D. B. & Klein, R. L. The advent of AAV9 expands applications for brain and spinal cord gene delivery. Expert Opin. Biol. Ther. 12, 757–766 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gao, G. et al. Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol. Ther. 13, 77–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Auricchio, A. et al. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum. Mol. Genet. 10, 3075–3081 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Wu, H., Hu, Z. & Liu, X. Q. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc. Natl Acad. Sci. USA 95, 9226–9231 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Aranko, A. S., Wlodawer, A. & Iwai, H. Nature’s recipe for splitting inteins. Protein Eng. Des. Sel. 27, 263–271 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li, J., Sun, W., Wang, B., Xiao, X. & Liu, X. Q. Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum. Gene Ther. 19, 958–964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stevens, A. J. et al. A promiscuous split intein with expanded protein engineering applications. Proc. Natl Acad. Sci. USA 114, 8538–8543 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zetsche, B., Volz, S. E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Li, C. & Samulski, R. J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 21, 255–272 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Noack, J. Koch and K. Skokann for their excellent technical support. We also thank M. Al-Ubaidi for the gift of the 661W cells. Furthermore, we thank the entire Biel laboratory for support and advice. This work was supported by the Deutsche Forschungsgemeinschaft, SPP2127 (to E.B. and S.M), and by the German Research Foundation Grants SFB 870 B05 (to S.M.).

Author information

Authors and Affiliations

Authors

Contributions

S.B., V.S., L.M.R. and K.S.H. designed and performed the experiments. L.M.R, K.S.H., N.K. and E.B. wrote the manuscript with contributions from S.M.

Corresponding author

Correspondence to Elvir Becirovic.

Ethics declarations

Competing interests

E.B., S.M., S.B., V.S. and L.M.R. are authors on a patent application related to this work (no. EP19198830, filed 23 September 2019). The other authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Hui Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Böhm, S. et al. Sci. Adv. 6, eaba5614 (2020): https://doi.org/10.1126/sciadv.aba5614

Supplementary information

Supplementary Table 1

Human IRD-linked genes and potential functionally equivalent counterparts

Reporting Summary

Source data

Source Data Fig. 5

Statistical source data for Fig. 5a–c.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riedmayr, L.M., Hinrichsmeyer, K.S., Karguth, N. et al. dCas9-VPR-mediated transcriptional activation of functionally equivalent genes for gene therapy. Nat Protoc 17, 781–818 (2022). https://doi.org/10.1038/s41596-021-00666-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00666-3

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research