Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Applications of and considerations for using CRISPR–Cas9-mediated gene conversion systems in rodents

Abstract

Genetic elements that are inherited at super-Mendelian frequencies could be used in a ‘gene drive’ to spread an allele to high prevalence in a population with the goal of eliminating invasive species or disease vectors. We recently demonstrated that the gene conversion mechanism underlying a CRISPR–Cas9-mediated gene drive is feasible in mice. Although substantial technical hurdles remain, overcoming these could lead to strategies that might decrease the spread of rodent-borne Lyme disease or eliminate invasive populations of mice and rats that devastate island ecology. Perhaps more immediately achievable at moderate gene conversion efficiency, applications in a laboratory setting could produce complex genotypes that reduce the time and cost in both dollars and animal lives compared with Mendelian inheritance strategies. Here, we discuss what we have learned from early efforts to achieve CRISPR–Cas9-mediated gene conversion, potential for broader applications in the laboratory, current limitations, and plans for optimizing this potentially powerful technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Self-propagating system versus split system.
Fig. 2: Meiotic timelines inform chromosome alignment.
Fig. 3: Active genetic strategies for the production of a variety of mouse models.
Fig. 4: Models of multilocus inheritance.

Similar content being viewed by others

Data availability

No original data or code has been generated or used for this paper. Equations used for models are available in the text or figure legends.

References

  1. Ericsson, A. C., Crim, M. J. & Franklin, C. L. A brief history of animal modeling. Mo. Med. 110, 201–205 (2013).

    PubMed  PubMed Central  Google Scholar 

  2. Meerburg, B. G., Singleton, G. R. & Kijlstra, A. Rodent-borne diseases and their risks for public health. Crit. Rev. Microbiol. 35, 221–270 (2009).

    Article  PubMed  Google Scholar 

  3. Towns, D. R., Atkinson, I. A. E. & Daugherty, C. H. Have the harmful effects of introduced rats on islands been exaggerated? Biol. Invasions 8, 863–891 (2006).

    Article  Google Scholar 

  4. Grunwald, H. A. et al. Super-Mendelian inheritance mediated by CRISPR–Cas9 in the female mouse germline. Nature 566, 105–109 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gantz, V. M. & Bier, E. The dawn of active genetics. BioEssays N. Rev. Mol. Cell. Dev. Biol. 38, 50–63 (2016).

    Google Scholar 

  6. Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bond, S. T. et al. Tissue-specific expression of Cas9 has no impact on whole-body metabolism in four transgenic mouse lines. Mol. Metab. 53, 101292 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Esvelt, K. M., Smidler, A. L., Catteruccia, F. & Church, G. M. Concerning RNA-guided gene drives for the alteration of wild populations. eLife 3, e03401 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Callaway, E. Controversial CRISPR ‘gene drives’ tested in mammals for the first time. Nature 559, 164–164 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Scudellari, M. Self-destructing mosquitoes and sterilized rodents: the promise of gene drives. Nature 571, 160–162 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Gantz, V. M. & Bier, E. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348, 442–444 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gantz, V. M. et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl Acad. Sci. USA 112, E6736–E6743 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu, X.-R. S., Gantz, V. M., Siomava, N. & Bier, E. CRISPR/Cas9 and active genetics-based trans-species replacement of the endogenous Drosophila kni-L2 CRM reveals unexpected complexity. eLife 6, e30281 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. López Del Amo, V. et al. A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment. Nat. Commun. 11, 352 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. DiCarlo, J. E., Chavez, A., Dietz, S. L., Esvelt, K. M. & Church, G. M. Safeguarding CRISPR-Cas9 gene drives in yeast. Nat. Biotechnol. 33, 1250–1255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Champer, J. et al. Molecular safeguarding of CRISPR gene drive experiments. eLife 8, e41439 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Noble, C. et al. Daisy-chain gene drives for the alteration of local populations. Proc. Natl Acad. Sci. USA 116, 8275 (2019).

  18. Singh, P., Schimenti, J. C. & Bolcun-Filas, E. A mouse geneticist’s practical guide to CRISPR applications. Genetics 199, 1–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Mao, Z., Bozzella, M., Seluanov, A. & Gorbunova, V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7, 2902–2906 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Li, G. et al. Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells. Sci. Rep. 7, 8943 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hu, Z. et al. Ligase IV inhibitor SCR7 enhances gene editing directed by CRISPR-Cas9 and ssODN in human cancer cells. Cell Biosci. 8, 12–12 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Janssen, J. M., Chen, X., Liu, J. & Gonçalves, M. A. F. V. The chromatin structure of CRISPR-Cas9 target DNA controls the balance between mutagenic and homology-directed gene-editing events. Mol. Ther. Nucleic Acids 16, 141–154 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu, B., Posfai, E. & Rossant, J. Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nat. Biotechnol. 36, 632–637 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Raveux, A., Vandormael-Pournin, S. & Cohen-Tannoudji, M. Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Sci. Rep. 7, 42661 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carlson-Stevermer, J. et al. Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nat. Commun. 8, 1711 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Aird, E. J., Lovendahl, K. N., St. Martin, A., Harris, R. S. & Gordon, W. R. Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun. Biol. 1, 54 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guichard, A. et al. Efficient allelic-drive in Drosophila. Nat. Commun. 10, 1640 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Romanienko, P. J. & Camerini-Otero, R. D. The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol. Cell 6, 975–987 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Comeron, J. M., Ratnappan, R. & Bailin, S. The many landscapes of recombination in Drosophila melanogaster. PLoS Genet. 8, e1002905 (2012).

  30. Duret, L. & Galtier, N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu. Rev. Genomics Hum. Genet. 10, 285–311 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Osada, N. & Innan, H. Duplication and gene conversion in the Drosophila melanogaster genome. PLoS Genet. 4, e1000305 (2008).

  32. Williams, A. L. et al. Non-crossover gene conversions show strong GC bias and unexpected clustering in humans. eLife 4, e04637 (2015).

    Article  PubMed Central  Google Scholar 

  33. de Vries, F. A. T. et al. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev. 19, 1376–1389 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Di Carlo, A. D., Travia, G. & De Felici, M. The meiotic specific synaptonemal complex protein SCP3 is expressed by female and male primordial germ cells of the mouse embryo. Int. J. Dev. Biol. 44, 241–244 (2000).

    PubMed  Google Scholar 

  35. Goetz, P., Chandley, A. C. & Speed, R. M. Morphological and temporal sequence of meiotic prophase development at puberty in the male mouse. J. Cell Sci. 65, 249 (1984).

    Article  CAS  PubMed  Google Scholar 

  36. Oakberg, E. F. A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am. J. Anat. 99, 391–413 (1956).

    Article  CAS  PubMed  Google Scholar 

  37. de Kretser, D. M., Loveland, K. L., Meinhardt, A., Simorangkir, D. & Wreford, N. Spermatogenesis. Hum. Reprod. 13, 1–8 (1998).

    Article  PubMed  Google Scholar 

  38. Weitzel, A. J. et al. Meiotic Cas9 expression mediates gene conversion in the male and female mouse germline. PLoS Biol. 19, e3001478 (2021).

  39. Goedecke, W., Eijpe, M., Offenberg, H. H., van Aalderen, M. & Heyting, C. Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat. Genet. 23, 194–198 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Enguita-Marruedo, A. et al. Transition from a meiotic to a somatic-like DNA damage response during the pachytene stage in mouse meiosis. PLoS Genet. 15, e1007439 (2019).

  41. Ahmed, E. A., Philippens, M. E. P., Kal, H. B., de Rooij, D. G. & de Boer, P. Genetic probing of homologous recombination and non-homologous end joining during meiotic prophase in irradiated mouse spermatocytes. Mutat. Res. 688, 12–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Hammond, A. et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol. 34, 78–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Simoni, A. et al. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0508-1 (2020).

  44. Unckless, R. L., Clark, A. G. & Messer, P. W. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics 205, 827–841 (2017).

    Article  PubMed  Google Scholar 

  45. Noble, C., Olejarz, J., Esvelt, K. M., Church, G. M. & Nowak, M. A. Evolutionary dynamics of CRISPR gene drives. Sci. Adv. 3, e1601964 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Champer, S. E. et al. Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs. Sci. Adv. 6, eaaz0525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Champer, J. et al. A CRISPR homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage population. Proc. Natl Acad. Sci. USA 117, 24377 (2020).

  48. Barbaric, I., Miller, G. & Dear, T. N. Appearances can be deceiving: phenotypes of knockout mice. Brief. Funct. Genomics 6, 91–103 (2007).

    Article  CAS  Google Scholar 

  49. Liao, B.-Y. & Zhang, J. Null mutations in human and mouse orthologs frequently result in different phenotypes. Proc. Natl Acad. Sci. USA 105, 6987 (2008).

  50. Mou, H. et al. CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biol. 18, 108–108 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sui, T. et al. CRISPR-induced exon skipping is dependent on premature termination codon mutations. Genome Biol. 19, 164–164 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. El-Brolosy, M. A. et al. Genetic compensation triggered by mutant mRNA degradation. Nature 568, 193–197 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mak, I. W., Evaniew, N. & Ghert, M. Lost in translation: animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 6, 114–118 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Devoy, A., Bunton-Stasyshyn, R. K. A., Tybulewicz, V. L. J., Smith, A. J. H. & Fisher, E. M. C. Genomically humanized mice: technologies and promises. Nat. Rev. Genet. 13, 14–20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhu, F., Nair, R. R., Fisher, E. M. C. & Cunningham, T. J. Humanising the mouse genome piece by piece. Nat. Commun. 10, 1845 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cooke, G. E. Pharmacogenetics of multigenic disease: heart disease as an example. Pharmacogenet. Heart Dis. 44, 66–74 (2006).

    CAS  Google Scholar 

  57. Bertram, L. & Tanzi, R. E. The genetics of Alzheimer’s disease. in Molecular Biology of Neurodegenerative Diseases (ed. Teplow, D. B.) 79–100 (Academic Press, 2012).

  58. Bottino, R. & Trucco, M. Multifaceted therapeutic approaches for a multigenic disease. Diabetes 54, S79–S86 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Mimitou, E. P. & Symington, L. S. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455, 770–774 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Zhu, Z., Chung, W.-H., Shim, E. Y., Lee, S. E. & Ira, G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134, 981–994 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hicks, W. M., Yamaguchi, M. & Haber, J. E. Real-time analysis of double-strand DNA break repair by homologous recombination. Proc. Natl Acad. Sci. USA 108, 3108–3115 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mehta, A. & Haber, J. E. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 6, a016428–a016428 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Song, Y., Lai, L. & Li, Z. Large-scale genomic deletions mediated by CRISPR/Cas9 system. Oncotarget 8, 5647–5647 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhang, L. et al. Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLOS One 10, e0120396 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hoshijima, K. et al. Highly efficient CRISPR-Cas9-based methods for generating deletion mutations and F0 embryos that lack gene function in zebrafish. Dev. Cell 51, 645–657.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zheng, Q. et al. Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells. BioTechniques 57, 115–124 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, X. et al. Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans. Sci. Rep. 4, 7581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Anderson, E. M. et al. Systematic analysis of CRISPR–Cas9 mismatch tolerance reveals low levels of off-target activity. J. Biotechnol. 211, 56–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Zheng, T. et al. Profiling single-guide RNA specificity reveals a mismatch sensitive core sequence. Sci. Rep. 7, 40638 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Grainger, S. et al. CRISPR guide RNA validation in vitro. Zebrafish 14, 383–386 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gallardo, T., Shirley, L., John, G. & Castrillon, D. H. Generation of a germ cell-specific mouse transgenic Cre line, Vasa-Cre. Genesis 45, 413–417 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chiou, S.-H. et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev. https://doi.org/10.1101/gad.264861.115 (2015).

  75. Toyooka, Y. et al. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech. Dev. 93, 139–149 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Pfitzner, C. et al. Progress toward zygotic and germline gene drives in mice. CRISPR J. 3, 388–397 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Bellani, M. A., Boateng, K. A., McLeod, D. & Camerini-Otero, R. D. The expression profile of the major mouse SPO11 isoforms indicates that SPO11β introduces double strand breaks and suggests that SPO11α has an additional role in prophase in both spermatocytes and oocytes. Mol. Cell. Biol. 30, 4391–4403 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rose, J. C. et al. Rapidly inducible Cas9 and DSB-ddPCR to probe editing kinetics. Nat. Methods 14, 891–896 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kallimasioti-Pazi, E. M. et al. Heterochromatin delays CRISPR-Cas9 mutagenesis but does not influence the outcome of mutagenic DNA repair. PLOS Biol. 16, e2005595 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yoshida, K. et al. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol. Cell 1, 707–718 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Kneitz, B. et al. MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev. 14, 1085–1097 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. de Vries, S. S. et al. Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev. 13, 523–531 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yuan, L. et al. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol. Cell 5, 73–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, J., Chen, L., Zhang, J. & Wang, Y. Drug inducible CRISPR/Cas systems. Comput. Struct. Biotechnol. J. 17, 1171–1177 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Maji, B. et al. Multidimensional chemical control of CRISPR-Cas9. Nat. Chem. Biol. 13, 9–11 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Byrne, S. M., Ortiz, L., Mali, P., Aach, J. & Church, G. M. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 43, e21–e21 (2015).

    Article  PubMed  Google Scholar 

  87. Deng, C. & Capecchi, M. R. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol. 12, 3365–3371 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Beumer, K. J., Trautman, J. K., Mukherjee, K. & Carroll, D. Donor DNA utilization during gene targeting with zinc-finger nucleases. G3 (Bethesda) 3, 657–664 (2013).

    Article  CAS  Google Scholar 

  89. Kuscu, C., Arslan, S., Singh, R., Thorpe, J. & Adli, M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32, 677–683 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670–676 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. van Overbeek, M. et al. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol. Cell 63, 633–646 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the input and advice of the Cooper laboratory as well as three referees who provided expert feedback and valuable clarifications for this work. This work was supported by National Institutes of Health R21GM129448 and a generous gift from the Tata Trusts in India to the Tata Institute for Genetics and Society–University of California San Diego (TIGS-UCSD) and TIGS-India. H.A.G. and A.J.W. were supported by National Institutes of Health training grant T32GM007240.

Author information

Authors and Affiliations

Authors

Contributions

H.A.G., A.J.W. and K.L.C. conceptualized, wrote and edited the manuscript.

Corresponding author

Correspondence to Kimberly L. Cooper.

Ethics declarations

Competing interests

K.L.C holds an advisory board position with Synbal, Inc. All other authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Jackson Champer, Gus McFarlane and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Grunwald, H. A. et al. Nature 566, 105–109 (2019): https://doi.org/10.1038/s41586-019-0875-2

Weitzel, A. J. et al. PLoS Biol. 19, e3001478 (2021): https://doi.org/10.1371/journal.pbio.3001478

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grunwald, H.A., Weitzel, A.J. & Cooper, K.L. Applications of and considerations for using CRISPR–Cas9-mediated gene conversion systems in rodents. Nat Protoc 17, 3–14 (2022). https://doi.org/10.1038/s41596-021-00646-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00646-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology