Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Fabrication and use of silicon hollow-needle arrays to achieve tissue nanotransfection in mouse tissue in vivo

Abstract

Tissue nanotransfection (TNT) is an electromotive gene transfer technology that was developed to achieve tissue reprogramming in vivo. This protocol describes how to fabricate the required hardware, commonly referred to as a TNT chip, and use it for in vivo TNT. Silicon hollow-needle arrays for TNT applications are fabricated in a standardized and reproducible way. In <1 s, these silicon hollow-needle arrays can be used to deliver plasmids to a predetermined specific depth in murine skin in response to pulsed nanoporation. Tissue nanotransfection eliminates the need to use viral vectors, minimizing the risk of genomic integration or cell transformation. The TNT chip fabrication process typically takes 5–6 d, and in vivo TNT takes 30 min. This protocol does not require specific expertise beyond a clean room equipped for basic nanofabrication processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic view of the TNT process, chip designs and scanning electron microscope (SEM) images of the fabricated chips.
Fig. 2: Quality control: clogging problem in the fabricated hollow needles.
Fig. 3: Typical lithography patterns for needle arrays in the fabrication process.
Fig. 4: Schematics of the fabrication process of the primary hollow needles with flat tip (type I).
Fig. 5: Etching and dicing processes.
Fig. 6: Controlling hole size with oxide deposition.
Fig. 7: Schematics of the fabrication process for the hollow needles with sharp tip and centered bore (Type II).
Fig. 8: Isotropic etching of Si to fabricate the sharp needle (Type II).
Fig. 9: Schematics of the fabrication process for the hollow-needle array with sharp tip and off-center bore (Type III).
Fig. 10: Preparation of the reservoir-mounted chip (Steps 2–8).
Fig. 11: Cutaneous TNT and in vivo reprogramming.
Fig. 12: Depth of cutaneous gene delivery as a function of applied voltage.

Similar content being viewed by others

Data availability

The individual images used to compile the figures shown and additional examples of the types of results obtained are available from Yi Xuan upon reasonable request. The design lithography patterns we used for needle fabrication are available at https://doi.org/10.6084/m9.figshare.16528311. Source data are provided with this paper.

References

  1. Abbasi, J. Nanochip turns skin into a bioreactor. JAMA 318, 898 (2017).

    PubMed  Google Scholar 

  2. Miller, M. A. Nanotransfection brings progress that’s more than skin-deep. Sci. Transl. Med. 9, eaao4216 (2017).

    Article  Google Scholar 

  3. Gallego-Perez, D. et al. Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue. Nat. Nanotechnol. 12, 974–979 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zakrewsky, M., Kumar, S. & Mitragotri, S. Nucleic acid delivery into skin for the treatment of skin disease: proofs-of-concept, potential impact, and remaining challenges. J. Control. Release 219, 445–456 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sharei, A. et al. A vector-free microfluidic platform for intracellular delivery. Proc. Natl Acad. Sci. USA 110, 2082–2087 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, Y. et al. Poking cells for efficient vector-free intracellular delivery. Nat. Commun. 5, 4466 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Pylaev, T., Vanzha, E., Avdeeva, E., Khlebtsov, B. & Khlebtsov, N. A novel cell transfection platform based on laser optoporation mediated by Au nanostar layers. J. Biophotonics 12, e201800166 (2019).

    Article  PubMed  Google Scholar 

  8. Xiong, R. H. et al. Comparison of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in live cells. ACS Nano 8, 6288–6296 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Boukany, P. E. et al. Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat. Nanotechnol. 6, 747–754 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Shi, J. et al. A review on electroporation-based intracellular delivery. Molecules 23, 3044 (2018).

    Article  PubMed Central  Google Scholar 

  11. Kay, M. A., Glorioso, J. C. & Naldini, L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. 7, 33–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Knight, S., Collins, M. & Takeuchi, Y. Insertional mutagenesis by retroviral vectors: current concepts and methods of analysis. Curr. Gene Ther. 13, 211–227 (2013).

    Article  PubMed  Google Scholar 

  13. Sawada, S. et al. Nanogel hybrid assembly for exosome intracellular delivery: effects on endocytosis and fusion by exosome surface polymer engineering. Biomater. Sci. 8, 619–630 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Yim, N. et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat. Commun. 7, 12277 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maas, S. L. N., Breakefield, X. O. & Weaver, A. M. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 27, 172–188 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, Q. Y. et al. ARMMs as a versatile platform for intracellular delivery of macromolecules. Nat. Commun. 9, 960 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Du, J. J., Jin, J., Yan, M. & Lu, Y. F. Synthetic nanocarriers for intracellular protein delivery. Curr. Drug Metab. 13, 82–92 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Cao, Y. et al. Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules. Proc. Natl Acad. Sci. USA 116, 7899–7904 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gallego-Perez, D. et al. Deterministic transfection drives efficient nonviral reprogramming and uncovers reprogramming barriers. Nanomedicine 12, 399–409 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Roy, S. et al. Neurogenic tissue nanotransfection in the management of cutaneous diabetic polyneuropathy. Nanomedicine 128, 102220 (2020).

    Article  Google Scholar 

  21. Huang, D. et al. Efficient delivery of nucleic acid molecules into skin by combined use of microneedle roller and flexible interdigitated electroporation array. Theranostics 8, 2361–2376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Petchsangsai, M., Rojanarata, T., Opanasopit, P. & Ngawhirunpat, T. The combination of microneedles with electroporation and sonophoresis to enhance hydrophilic macromolecule skin penetration. Biol. Pharm. Bull. 37, 1373–1382 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Vinayakumar, K. B. et al. A hollow stainless steel microneedle array to deliver insulin to a diabetic rat. J. Micromech. Microeng. 26, 065013 (2016).

    Article  Google Scholar 

  24. McAllister, D. V. et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc. Natl Acad. Sci. USA 100, 13755–13760 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miller, P. R. et al. Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing. Biomicrofluidics 5, 13415 (2011).

    Article  PubMed  Google Scholar 

  26. Mishra, R., Maiti, T. K. & Bhattacharyya, T. K. Development of SU-8 hollow microneedles on a silicon substrate with microfluidic interconnects for transdermal drug delivery. J Micromech Microeng 28, https://doi.org/10.1088/1361-6439/aad301 (2018).

  27. Mishra, R., Pramanick, B., Maiti, T. K. & Bhatracharyya, T. K. Glassy carbon microneedles—new transdermal drug delivery device derived from a scalable C-MEMS process. Microsyst. Nanoeng. 4, 38 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gardeniers, H. J. G. E. et al. Silicon micromachined hollow microneedles for transdermal liquid transport. J. Microelectromech. Syst. 12, 855–862 (2003).

    Article  Google Scholar 

  29. Li, Y. et al. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsyst. Nanoeng. 5, 41 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ashrf, M. et al. Design, simulation and fabrication of silicon microneedles for bio-medical applications. Trans. Electr. Eng. Electron. Commun. 9, 83–91 (2011).

    Google Scholar 

  31. Wilke, N., Mulcahy, A., Ye, S. R. & Morrissey, A. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron. J. 36, 650–656 (2005).

    Article  CAS  Google Scholar 

  32. Kang, S. K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Marty, F. et al. Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures. Microelectron. J. 36, 673–677 (2005).

    Article  CAS  Google Scholar 

  34. Ji, J., Tay, F. E. H., Miao, J. M. & Iliescu, C. Microfabricated silicon microneedle array for transdermal drug delivery. J. Phys. Conf. Ser. 34, 1127–1131 (2006).

    Article  CAS  Google Scholar 

  35. Wilke, N., Hibert, C., O’Brien, J. & Morrissey, A. Silicon microneedle electrode array with temperature monitoring for electroporation. Sens. Actuat. A Phys. 123–124, 319–325 (2005).

    Article  Google Scholar 

  36. Lai, S. L., Johnson, D. & Westerman, R. Aspect ratio dependent etching lag reduction in deep silicon etch processes. J. Vac. Sci. Technol. A 24, 1283–1288 (2006).

    Article  CAS  Google Scholar 

  37. Tang, Y., Sandoughsaz, A., Owen, K. J. & Najafi, K. Ultra deep reactive ion etching of high aspect-ratio and thick silicon using a ramped-parameter process. J. Microelectromech. Syst. 27, 686–697 (2018).

    Article  CAS  Google Scholar 

  38. Collins, F. Tissue nanotransfection: skin cells can be reprogrammed in vivo. https://directorsblog.nih.gov/2019/02/14/skin-cells-can-be-reprogrammed-in-vivo/ (NIH Director’s Blog, 2019).

  39. Zhou, X. et al. Exosome-mediated crosstalk between keratinocytes and macrophages in cutaneous wound healing. ACS Nano 14, 12732–12748 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moore, J. T. et al. Nanochannel-based poration drives benign and effective nonviral gene delivery to peripheral nerve tissue. Adv. Biosyst. 4, e2000157 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cunningham, J. J., Ulbright, T. M., Pera, M. F. & Looijenga, L. H. Lessons from human teratomas to guide development of safe stem cell therapies. Nat. Biotechnol. 30, 849–857 (2012); erratum 31, 565 (2013).

  42. Losordo, D. W. & Dimmeler, S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation 109, 2692–2697 (2004).

    Article  PubMed  Google Scholar 

  43. Mount, N. M., Ward, S. J., Kefalas, P. & Hyllner, J. Cell-based therapy technology classifications and translational challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20150017 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Luckay, A. et al. Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques. J. Virol. 81, 5257–5269 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vargas, J. E. et al. Retroviral vectors and transposons for stable gene therapy: advances, current challenges and perspectives. J. Transl. Med. 14, 288 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Aihara, H. & Miyazaki, J.-i Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol. 16, 867–870 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Mir, L. M. et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl Acad. Sci. USA 96, 4262–4267 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lin, F. et al. Optimization of electroporation-enhanced intradermal delivery of DNA vaccine using a minimally invasive surface device. Hum. Gene Ther. Methods 23, 157–168 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Matriano, J. A. et al. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm. Res. 19, 63–70 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Daugimont, L. et al. Hollow microneedle arrays for intradermal drug delivery and DNA electroporation. J. Membr. Biol. 236, 117–125 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Park, J. H., Allen, M. G. & Prausnitz, M. R. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J. Control. Release 104, 51–66 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Park, J. H., Yoon, Y. K., Choi, S. O., Prausnitz, M. R. & Allen, M. G. Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery. IEEE Trans. Biomed. Eng. 54, 903–913 (2007).

    Article  PubMed  Google Scholar 

  53. Sullivan, S. P. et al. Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 16, 915–920 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van der Maaden, K. et al. Hollow microneedle-mediated micro-injections of a liposomal HPV E7(43-63) synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. J. Control. Release 269, 347–354 (2018).

    Article  PubMed  Google Scholar 

  55. Kim, Y. C., Park, J. H. & Prausnitz, M. R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64, 1547–1568 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Narayanan, S. P. & Raghavan, S. Solid silicon microneedles for drug delivery applications. Int. J. Adv. Manuf. Tech. 93, 407–422 (2017).

    Article  Google Scholar 

  57. Xie, X. et al. Nanostraw–electroporation system for highly efficient intracellular delivery and transfection. ACS Nano 7, 4351–4358 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Cao, Y. et al. Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring. Proc. Natl Acad. Sci. USA 114, E1866–E1874 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. He, G. et al. Fabrication of various structures of nanostraw arrays and their applications in gene delivery. Adv. Mater. Interfaces 5, 1701535 (2018).

    Article  Google Scholar 

  60. He, G. et al. Multifunctional branched nanostraw-electroporation platform for intracellular regulation and monitoring of circulating tumor cells. Nano Lett. 19, 7201–7209 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Tay, A. & Melosh, N. Nanostructured materials for intracellular cargo delivery. Acc. Chem. Res. 52, 2462–2471 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Wen, R. et al. Intracellular delivery and sensing system based on electroplated conductive nanostraw arrays. ACS Appl. Mater. Interfaces 11, 43936–43948 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Gill, H. S. & Prausnitz, M. R. Coated microneedles for transdermal delivery. J. Control. Release 117, 227–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. DeMuth, P. C., Su, X., Samuel, R. E., Hammond, P. T. & Irvine, D. J. Nano-layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Adv. Mater. 22, 4851–4856 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, H. et al. Bioresorbable, miniaturized porous silicon needles on a flexible water-soluble backing for unobtrusive, sustained delivery of chemotherapy. ACS Nano 14, 7227–7236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chiappini, C. et al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 14, 532–539 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, B., Shi, Y., Miyamoto, D., Nakazawa, K. & Miyake, T. Nanostraw membrane stamping for direct delivery of molecules into adhesive cells. Sci. Rep. 9, 6806 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Seong, H. et al. Size-tunable nanoneedle arrays for influencing stem cell morphology, gene expression, and nuclear membrane curvature. ACS Nano 14, 5371–5381 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, W., Li, H., Shi, D., Liu, Z. & Yuan, W. Microneedles as a delivery system for gene therapy. Front. Pharmacol. 7, 137 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dul, M. et al. Hydrodynamic gene delivery in human skin using a hollow microneedle device. J. Control. Release 265, 120–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Bolhassani, A., Khavari, A. & Orafa, Z. Electroporation—advantages and drawbacks for delivery of drug, gene and vaccine. in Application of Nanotechnology in Drug Delivery (InTech, 2014).

  72. Huo, Z.-Y. et al. Carbon-nanotube sponges enabling highly efficient and reliable cell inactivation by low-voltage electroporation. Environ. Sci. Nano 4, 2010–2017 (2017).

    Article  CAS  Google Scholar 

  73. Hyder, I., Eghbalsaied, S. & Kues, W. A. Systematic optimization of square-wave electroporation conditions for bovine primary fibroblasts. BMC Mol. Cell Biol. 21, 9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hu, Y., Werner, C. & Li, D. Electrokinetic transport through rough microchannels. Anal. Chem. 75, 5747–5758 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Fu, J. et al. Improving sidewall roughness by combined RIE-Bosch process. Mat. Sci. Semicon. Proc. 83, 186–191 (2018).

    Article  CAS  Google Scholar 

  76. Chutani, R. K., Hasegawa, M., Maurice, V., Passilly, N. & Gorecki, C. Single-step deep reactive ion etching of ultra-deep silicon cavities with smooth sidewalls. Sens. Actuators A Phys. 208, 66 (2014).

    Article  CAS  Google Scholar 

  77. Canatella, P. J., Karr, J. F., Petros, J. A. & Prausnitz, M. R. Quantitative study of electroporation-mediated molecular uptake and cell viability. Biophys. J. 80, 755–764 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stewart, M. P. et al. In vitro and ex vivo strategies for intracellular delivery. Nature 538, 183–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Fei, Z. et al. Micronozzle array enhanced sandwich electroporation of embryonic stem cells. Anal. Chem. 82, 353–358 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Chang, L. et al. Magnetic tweezers-based 3D microchannel electroporation for high-throughput gene transfection in living cells. Small 11, 1818–1828 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Cao, Y. et al. Reply to Nathamgari et al.: nanopore electroporation for intracellular delivery of biological macromolecules. Proc. Natl Acad. Sci. USA 116, 22911 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Herrick, A., Perry, A. J. & Boswell, R. W. Etching silicon by SF6 in a continuous and pulsed power helicon reactor. J. Vac. Sci. Technol. A 21, 955–966 (2003).

    Article  CAS  Google Scholar 

  83. Wongwanitwattana, C. et al. Precision plasma etching of Si, Ge, and Ge:P by SF6 with added O2. J. Vac. Sci. Technol. A 32, 031302 (2014).

    Article  Google Scholar 

  84. Shikida, M., Hasada, T. & Sato, K. Fabrication of a hollow needle structure by dicing, wet etching and metal deposition. J. Micromech. Microeng. 16, 2230–2239 (2006).

    Article  Google Scholar 

  85. Yan, G., Warner, K. S., Zhang, J., Sharma, S. & Gale, B. K. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int. J. Pharmaceutics 391, 7–12 (2010).

    Article  CAS  Google Scholar 

  86. Natu, R., Islam, M., Gilmore, J. & Martinez-Duarte, R. Shrinkage of SU-8 microstructures during carbonization. J. Anal. Appl. Pyrolysis 131, 17–27 (2018).

    Article  CAS  Google Scholar 

  87. Miyazaki, J.-i. & Aihara, H. Gene transfer into muscle by electroporation in vivo. in Gene Therapy Protocols 2nd edn (ed. Morgan, J. R.). 49–62 (Springer, 2002).

  88. Zhang, X. et al. Characteristics of liquid flow in microchannels at very low Reynolds numbers. Chem. Eng. Technol. 39, 1425–1430 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work made use of the Pritzker Nanofabrication Facility, which receives partial support from the SHyNE Resource, a node of the National Science Foundation’s National Nanotechnology Coordinated Infrastructure (NSF ECCS-2025633). We thank Parker Evans for his help in measuring the force applied during the TNT process. This work was supported in part by NIH grant DK128845; Department of Defense grants W81XWH-21-1-0097, W81XWH-21-1-0033 and W81XWH-20-1-251 to C.K.S.; Department of Defense grant W81XWH-21-1-0047 to S.K.; and NIH grant GM143572 to Y.X.

Author information

Authors and Affiliations

Authors

Contributions

C.K.S. conceived the idea and provided design guidelines to Y.X. Y.X. finalized the designs and fabricated TNT chips with support from Z.L. and P.D. A.C., S.G., S.K. and S.R. designed and performed the TNT procedure on mice and other biological experiments. Z.L. carried out the SEM imaging and focused ion beam operation with support from D.P. M.A. integrated the TNT chip and the plasmid reservoir. All authors contributed to writing and editing the manuscript. C.K.S. supervised, resourced and led this project.

Corresponding authors

Correspondence to Yi Xuan or Chandan K. Sen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Tarun Bhattacharyya, Kui Cheng, Yuanyu Huang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Gallego-Perez, D. et al. Nat. Nanotechnol. 12, 974–979 (2017): https://doi.org/10.1038/nnano.2017.134

Supplementary information

Supplementary Information

Supplementary Manual.

Source data

Source Data Fig. 11

Gene expression fold change raw data for Fig. 11c.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, Y., Ghatak, S., Clark, A. et al. Fabrication and use of silicon hollow-needle arrays to achieve tissue nanotransfection in mouse tissue in vivo. Nat Protoc 16, 5707–5738 (2021). https://doi.org/10.1038/s41596-021-00631-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00631-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing