Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generation of heart-forming organoids from human pluripotent stem cells

Abstract

Heart-forming organoids (HFOs) derived from human pluripotent stem cells (hPSCs) are a complex, highly structured in vitro model of early heart, foregut and vasculature development. The model represents a potent tool for various applications, including teratogenicity studies, gene function analysis and drug discovery. Here, we provide a detailed protocol describing how to form HFOs within 14 d. In an initial 4 d preculture period, hPSC aggregates are individually formed in a 96-well format and then Matrigel-embedded. Subsequently, the chemical WNT pathway modulators CHIR99021 and IWP2 are applied, inducing directed differentiation. This highly robust protocol can be used on many different hPSC lines and be combined with manipulation technologies such as gene targeting and drug testing. HFO formation can be assessed by numerous complementary methods, ranging from various imaging approaches to gene expression studies. Here, we highlight the flow cytometry-based analysis of individual HFOs, enabling the quantitative monitoring of lineage formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scheme of an HFO.
Fig. 2: Schematic illustration of the HFO differentiation from hPSCs.
Fig. 3: Morphology of hPSCs on MEFs and in monolayer culture.
Fig. 4: Preculture of HFOs.
Fig. 5: Differentiation of HFOs.
Fig. 6: Monitoring and collection of d10 HFOs.
Fig. 7: HFO differentiation efficiency and tissue characterization.
Fig. 8: Gating strategy for a flow cytometry analysis of an HFO.

Similar content being viewed by others

Data availability

The flow cytometry data are available in the FlowRepository under accession code FR-FCM-Z4C4. All remaining data generated or analyzed during this study are included in this published article and its supplementary files.

References

  1. Fatehullah, A., Tan, S. H. & Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18, 246–254 (2016).

    Article  CAS  Google Scholar 

  2. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  Google Scholar 

  3. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    Article  CAS  Google Scholar 

  4. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  CAS  Google Scholar 

  5. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  CAS  Google Scholar 

  6. Drakhlis, L. et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat. Biotechnol. 9, 737–746 (2021).

    Article  CAS  Google Scholar 

  7. Brand, T. Heart development: molecular insights into cardiac specification and early morphogenesis. Dev. Biol. 258, 1–19 (2003).

    Article  CAS  Google Scholar 

  8. Kempf, H., Kropp, C., Olmer, R., Martin, U. & Zweigerdt, R. Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat. Protoc. 10, 1345–1361 (2015).

    Article  CAS  Google Scholar 

  9. Kempf, H. et al. Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Rep. 3, 1132–1146 (2014).

    Article  CAS  Google Scholar 

  10. Naujok, O., Diekmann, U. & Lenzen, S. The generation of definitive endoderm from human embryonic stem cells is initially independent from activin A but requires canonical Wnt-signaling. Stem Cell Rev. Rep. 10, 480–493 (2014).

    Article  Google Scholar 

  11. Siller, R., Greenhough, S., Naumovska, E. & Sullivan, G. J. Small-molecule-driven hepatocyte differentiation of human pluripotent stem cells. Stem Cell Rep. 4, 939–952 (2015).

    Article  CAS  Google Scholar 

  12. Lian, X. et al. Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Rep. 3, 804–816 (2014).

    Article  CAS  Google Scholar 

  13. Gaspari, E. et al. Paracrine mechanisms in early differentiation of human pluripotent stem cells: insights from a mathematical model. Stem Cell Res. 32, 1–7 (2018).

    Article  CAS  Google Scholar 

  14. Kempf, H. et al. Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat. Commun. 7, 13602 (2016).

    Article  CAS  Google Scholar 

  15. Giacomelli, E. et al. Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell 26, 862–879 e811 (2020).

    Article  CAS  Google Scholar 

  16. Mills, R. J. et al. Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell 24, 895–907 e896 (2019).

    Article  CAS  Google Scholar 

  17. Mills, R. J. et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc. Natl Acad. Sci. USA 114, E8372–E8381 (2017).

    Article  CAS  Google Scholar 

  18. Richards, D. J. et al. Inspiration from heart development: biomimetic development of functional human cardiac organoids. Biomaterials 142, 112–123 (2017).

    Article  CAS  Google Scholar 

  19. Richards, D. J. et al. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nat. Biomed. Eng. 4, 446–462 (2020).

    Article  CAS  Google Scholar 

  20. Thavandiran, N. et al. Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc. Natl Acad. Sci. USA 110, E4698–E4707 (2013).

    Article  CAS  Google Scholar 

  21. Voges, H. K. et al. Development of a human cardiac organoid injury model reveals innate regenerative potential. Development 144, 1118–1127 (2017).

    CAS  Google Scholar 

  22. Ma, Z. et al. Self-organizing human cardiac microchambers mediated by geometric confinement. Nat. Commun. 6, 7413 (2015).

    Article  CAS  Google Scholar 

  23. Hoang, P., Wang, J., Conklin, B. R., Healy, K. E. & Ma, Z. Generation of spatial-patterned early-developing cardiac organoids using human pluripotent stem cells. Nat. Protoc. 13, 723–737 (2018).

    Article  CAS  Google Scholar 

  24. Andersen, P. et al. Precardiac organoids form two heart fields via Bmp/Wnt signaling. Nat. Commun. 9, 3140 (2018).

    Article  CAS  Google Scholar 

  25. Rossi, G. et al. Capturing cardiogenesis in gastruloids. Cell Stem Cell 28, 230–240 e236 (2021).

    Article  CAS  Google Scholar 

  26. Manstein, F. et al. High density bioprocessing of human pluripotent stem cells by metabolic control and in silico modeling. Stem Cells Transl. Med. 10, 1063–1080 (2021).

    Article  Google Scholar 

  27. Den Hartogh, S. C. et al. Dual reporter MESP1 mCherry/w-NKX2-5 eGFP/w hESCs enable studying early human cardiac differentiation. Stem Cells 33, 56–67 (2015).

    Article  CAS  Google Scholar 

  28. Elliott, D. A. et al. NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat. Methods 8, 1037–1040 (2011).

    Article  CAS  Google Scholar 

  29. Davis, R. P. et al. Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 111, 1876–1884 (2008).

    Article  CAS  Google Scholar 

  30. Haase, A., Gohring, G. & Martin, U. Generation of non-transgenic iPS cells from human cord blood CD34+ cells under animal component-free conditions. Stem Cell Res 21, 71–73 (2017).

    Article  CAS  Google Scholar 

  31. Guibentif, C. et al. Single-cell analysis identifies distinct stages of human endothelial-to-hematopoietic transition. Cell Rep. 19, 10–19 (2017).

    Article  CAS  Google Scholar 

  32. Chen, G. et al. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8, 424–429 (2011).

    Article  CAS  Google Scholar 

  33. Zweigerdt, R., Olmer, R., Singh, H., Haverich, A. & Martin, U. Scalable expansion of human pluripotent stem cells in suspension culture. Nat. Protoc. 6, 689–700 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. C. Den Hartogh and R. Passier (Department of Anatomy and Embryology, Leiden University Medical Centre; current affiliation: Faculty of Science and Technology, University of Twente) for providing the HES3 NKX2.5-eGFP cell line, C. Guibentif and N.-B. Woods (Lund Stem Cell Center, Lund University) for the iPSC-CB1RB9_WAS-GFP cell line, A. Haase and U. Martin (LEBAO, MHH) for the hHSC_Iso4_ADCF_SeV-iPS2 cell line, and E. G. Stanley and A. G. Elefanty (Monash Immunology and Stem Cell Laboratories, Monash University) for the HES3 MIXL1-GFP cell line. R.Z. received funding from: German Research Foundation (DFG; grants Cluster of Excellence REBIRTH EXC 62/2, ZW64/4-1, ZW64/4-2, KFO311/ZW64/7-1), German Ministry for Education and Science (BMBF, grants 13N14086, 01EK1601A, 01EK1602A, 13XP5092B, 031L0249), ‘Förderung aus Mitteln des Niedersächsischen Vorab’ (grant ZN3340), ‘Cortiss Stiftung’, and the European Union H2020 project TECHNOBEAT (grant 66724).

Author information

Authors and Affiliations

Authors

Contributions

L.D., S.B.D. and R.Z. designed the experiments. L.D. and S.B.D. performed the experiments and analyzed the data. R.Z. supervised the project. L.D., S.B.D. and R.Z. wrote the manuscript.

Corresponding author

Correspondence to Robert Zweigerdt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Chulan Kwon, Zhen Ma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Drakhlis, L. et al. Nat. Biotechnol. 39, 737–746 (2021): https://doi.org/10.1038/s41587-021-00815-9

Supplementary information

Supplementary Video 1

Movement of a T25 flask inside an incubator to ensure equal distribution of cells after seeding.

Supplementary Video 2

Embedding of an hPSC aggregate in a Matrigel droplet (d-2).

Supplementary Video 3

Removing the culture medium with 1000 µL and 200 µL tips.

Supplementary Video 4

Removing the culture medium with stacked tips (10 µL tip put on a 200 µL tip using a 20 – 200 µL pipet).

Supplementary Video 5

Transfer of a d10 HFO from the 96-U-well plate to a 12-well suspension plate using a 100 – 1000 µL pipet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drakhlis, L., Devadas, S.B. & Zweigerdt, R. Generation of heart-forming organoids from human pluripotent stem cells. Nat Protoc 16, 5652–5672 (2021). https://doi.org/10.1038/s41596-021-00629-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00629-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing