Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.

The spontaneous location recognition task for assessing spatial pattern separation and memory across a delay in rats and mice

Abstract

Keeping similar memories distinct from one another is a critical cognitive process without which we would have difficulty functioning in everyday life. Memories are thought to be kept distinct through the computational mechanism of pattern separation, which reduces overlap between similar input patterns to amplify differences among stored representations. At the behavioral level, impaired pattern separation has been shown to contribute to memory deficits seen in neuropsychiatric and neurodegenerative diseases, including Alzheimer’s disease, and in normal aging. This protocol describes the use of the spontaneous location recognition (SLR) task in mice and rats to behaviorally assess spatial pattern separation ability. This two-phase spontaneous memory task assesses the extent to which animals can discriminate and remember object locations presented during the encoding phase. Using three configurations of the task, the similarity of the to-be-remembered locations can be parametrically manipulated by altering the spatial positions of objects—dissimilar, similar or extra similar—to vary the load on pattern separation. Unlike other pattern separation tasks, SLR varies the load on pattern separation during encoding, when pattern separation is thought to occur. Furthermore, SLR can be used in standard rodent behavioral facilities with basic expertise in rodent handling. The entire protocol takes ~20 d from habituation to testing of the animals on all three task configurations. By incorporating breaks between testing, and varying the objects used as landmarks, animals can be tested repeatedly, increasing experimental power by allowing for within-subjects manipulations.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: SLR task to assess pattern separation in rats or mice.
Fig. 2: Experimental data showing the effect of manipulations that reduce or augment hippocampal plasticity on SLR performance.
Fig. 3: SLR apparatus setup for rats and mice.
Fig. 4: Objects used in SLR tests, showing examples of objects that we have previously used successfully with mice.
Fig. 5: SLR test performance in rats and mice.
Fig. 6: Flowchart of the experimental protocol for rats and mice.

Data availability

The authors declare that the main data supporting the findings of this protocol are available within the article and and/or are already published and included with permission. Extra data are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Tulving, E. Episodic and semantic memory. in Organization of Memory (eds Tulving, E. & Donaldson, W.) 381–403 (Academic Press, 1972).

  2. Rolls, E. The mechanisms for pattern completion and pattern separation in the hippocampus. Front. Syst. Neurosci. 7, 74 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Marr, D. & Thach, W. T. A theory of cerebellar cortex. in From the Retina to the Neocortex (ed. Vaina, L.) 11–50 (Springer, 1991).

  4. Frankland, P. W., Cestari, V., Filipkowski, R. K., McDonald, R. J. & Silva, A. J. The dorsal hippocampus is essential for context discrimination but not for contextual conditioning. Behav. Neurosci. 112, 863 (1998).

    CAS  PubMed  Google Scholar 

  5. Gilbert, P. E., Kesner, R. P. & DeCoteau, W. E. Memory for spatial location: role of the hippocampus in mediating spatial pattern separation. J. Neurosci. 18, 804–810 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. McDonald, R. J. & White, N. M. Hippocampal and nonhippocampal contributions to place learning in rats. Behav. Neurosci. 109, 579 (1995).

    CAS  PubMed  Google Scholar 

  7. McTighe, S. M., Mar, A. C., Romberg, C., Bussey, T. J. & Saksida, L. M. A new touchscreen test of pattern separation: effect of hippocampal lesions. Neuroreport 20, 881–885 (2009).

    PubMed  Google Scholar 

  8. Kent, B. A., Hvoslef-Eide, M., Saksida, L. M. & Bussey, T. J. The representational–hierarchical view of pattern separation: not just hippocampus, not just space, not just memory? Neurobiol. Learn. Mem. 129, 99–106 (2016).

    CAS  PubMed  Google Scholar 

  9. Bekinschtein, P. et al. Brain-derived neurotrophic factor interacts with adult-born immature cells in the dentate gyrus during consolidation of overlapping memories. Hippocampus 24, 905–911 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Clelland, C. et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325, 210–213 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Creer, D. J., Romberg, C., Saksida, L. M., van Praag, H. & Bussey, T. J. Running enhances spatial pattern separation in mice. Proc. Natl Acad. Sci. USA 107, 2367–2372 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kheirbek, M. A., Klemenhagen, K. C., Sahay, A. & Hen, R. Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat. Neurosci. 15, 1613–1620 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakashiba, T. et al. Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149, 188–201 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sahay, A. et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466–470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tronel, S. et al. Adult-born neurons are necessary for extended contextual discrimination. Hippocampus 22, 292–298 (2012).

    PubMed  Google Scholar 

  16. Quian Quiroga, R. No pattern separation in the human hippocampus. Trends Cogn. Sci. 24, 994–1007 (2020).

    PubMed  Google Scholar 

  17. Suthana, N., Ekstrom, A. D., Yassa, M. A. & Stark, C. Pattern separation in the human hippocampus: response to Quiroga. Trends Cogn. Sci. 25, 423–424 (2021).

    PubMed  PubMed Central  Google Scholar 

  18. Berlyne, D. E. Novelty and curiosity as determinants of exploratory behaviour. Br. J. Psychol. 41, 68 (1950).

    Google Scholar 

  19. Bekinschtein, P. et al. BDNF in the dentate gyrus is required for consolidation of “pattern-separated” memories. Cell Rep. 5, 759–768 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kent, B. A. et al. The orexigenic hormone acyl-ghrelin increases adult hippocampal neurogenesis and enhances pattern separation. Psychoneuroendocrinology 51, 431–439 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Miranda, M. et al. NMDA receptors and BDNF are necessary for discrimination of overlapping spatial and non-spatial memories in perirhinal cortex and hippocampus. Neurobiol. Learn. Mem. 155, 337–343 (2018).

    CAS  PubMed  Google Scholar 

  22. Buyukata, C., Vukalo, M., Xu, T. J., Khore, M. A. & Reichelt, A. C. Impact of high sucrose diets on the discrimination of spatial and object memories with overlapping features. Physiol. Behav. 192, 127–133 (2018).

    CAS  PubMed  Google Scholar 

  23. Gilchrist, C. P. et al. Hippocampal neurogenesis and memory in adolescence following intrauterine growth restriction. Hippocampus 31, 321–334 (2021).

    CAS  PubMed  Google Scholar 

  24. Hueston, C. M. et al. Chronic interleukin-1β in the dorsal hippocampus impairs behavioural pattern separation. Brain Behav. Immun. 74, 252–264 (2018).

    CAS  PubMed  Google Scholar 

  25. Reichelt, A. C., Morris, M. J. & Westbrook, R. F. Daily access to sucrose impairs aspects of spatial memory tasks reliant on pattern separation and neural proliferation in rats. Learn. Mem. 23, 386–390 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bonafina, A. et al. GDNF and GFRα1 are required for proper integration of adult-born hippocampal neurons. Cell Rep. 29, 4308–4319. e4304 (2019).

    CAS  PubMed  Google Scholar 

  27. Morales, C. et al. Dentate gyrus somatostatin cells are required for contextual discrimination during episodic memory encoding. Cereb. Cortex 31, 1046–1059 (2021).

    PubMed  Google Scholar 

  28. Clark, R. E., Zola, S. M. & Squire, L. R. Impaired recognition memory in rats after damage to the hippocampus. J. Neurosci. 20, 8853–8860 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dix, S. L. & Aggleton, J. P. Extending the spontaneous preference test of recognition: evidence of object-location and object-context recognition. Behav. Brain Res. 99, 191–200 (1999).

    CAS  PubMed  Google Scholar 

  30. Gilbert, P. E., Kesner, R. P. & Lee, I. Dissociating hippocampal subregions: a double dissociation between dentate gyrus and CA1. Hippocampus 11, 626–636 (2001).

    CAS  PubMed  Google Scholar 

  31. Oomen, C. A. et al. The touchscreen operant platform for testing working memory and pattern separation in rats and mice. Nat. Protoc. 8, 2006–2021 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, C. H. et al. Trial-unique, delayed nonmatching-to-location (TUNL) touchscreen testing for mice: sensitivity to dorsal hippocampal dysfunction. Psychopharmacology 232, 3935–3945 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Talpos, J., McTighe, S., Dias, R., Saksida, L. & Bussey, T. Trial-unique, delayed nonmatching-to-location (TUNL): a novel, highly hippocampus-dependent automated touchscreen test of location memory and pattern separation. Neurobiol. Learn. Mem. 94, 341–352 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hunsaker, M. R., Rosenberg, J. S. & Kesner, R. P. The role of the dentate gyrus, CA3a, b, and CA3c for detecting spatial and environmental novelty. Hippocampus 18, 1064–1073 (2008).

    PubMed  Google Scholar 

  35. Van Goethem, N., Schreiber, R., Newman‐Tancredi, A., Varney, M. & Prickaerts, J. Divergent effects of the ‘biased’5‐HT 1 A receptor agonists F15599 and F13714 in a novel object pattern separation task. Br. J. Pharmacol. 172, 2532–2543 (2015).

    PubMed  PubMed Central  Google Scholar 

  36. van Goethem, N. P., van Hagen, B. T. & Prickaerts, J. Assessing spatial pattern separation in rodents using the object pattern separation task. Nat. Protoc. 13, 1763–1792 (2018).

    PubMed  Google Scholar 

  37. Van Hagen, B., Van Goethem, N., Lagatta, D. & Prickaerts, J. The object pattern separation (OPS) task: a behavioral paradigm derived from the object recognition task. Behav. Brain Res. 285, 44–52 (2015).

    PubMed  Google Scholar 

  38. Prusky, G. T., Harker, K. T., Douglas, R. M. & Whishaw, I. Q. Variation in visual acuity within pigmented, and between pigmented and albino rat strains. Behav. Brain Res. 136, 339–348 (2002).

    PubMed  Google Scholar 

  39. Brown, R. E. & Wong, A. A. The influence of visual ability on learning and memory performance in 13 strains of mice. Learn. Mem. 14, 134–144 (2007).

    PubMed  PubMed Central  Google Scholar 

  40. Wong, A. A. & Brown, R. E. Visual detection, pattern discrimination and visual acuity in 14 strains of mice. Genes Brain Behav. 5, 389–403 (2006).

    CAS  PubMed  Google Scholar 

  41. Abbott, K. N., Morris, M. J., Westbrook, R. F. & Reichelt, A. C. Sex-specific effects of daily exposure to sucrose on spatial memory performance in male and female rats, and implications for estrous cycle stage. Physiol. Behav. 162, 52–60 (2016).

    CAS  PubMed  Google Scholar 

  42. Shansky, R. M. Are hormones a “female problem” for animal research? Science 364, 825–826 (2019).

    CAS  PubMed  Google Scholar 

  43. Costa, R., Tamascia, M. L., Nogueira, M. D., Casarini, D. E. & Marcondes, F. K. Handling of adolescent rats improves learning and memory and decreases anxiety. J. Am. Assoc. Lab. Anim. Sci. 51, 548–553 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rebouças, R. C. & Schmidek, W. R. Handling and isolation in three strains of rats affect open field, exploration, hoarding and predation. Physiol. Behav. 62, 1159–1164 (1997).

    PubMed  Google Scholar 

  45. Gouveia, K. & Hurst, J. L. Optimising reliability of mouse performance in behavioural testing: the major role of non-aversive handling. Sci. Rep. 7, 44999 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Deacon, R. M. Housing, husbandry and handling of rodents for behavioral experiments. Nat. Protoc. 1, 936 (2006).

    PubMed  Google Scholar 

  47. Heiderstadt, K., McLaughlin, R., Wrighe, D., Walker, S. & Gomez-Sanchez, C. The effect of chronic food and water restriction on open-field behaviour and serum corticosterone levels in rats. Lab. Anim. 34, 20–28 (2000).

    CAS  PubMed  Google Scholar 

  48. Brown, K. J. & Grunberg, N. E. Effects of housing on male and female rats: crowding stresses males but calms females. Physiol. Behav. 58, 1085–1089 (1995).

    CAS  PubMed  Google Scholar 

  49. Kappel, S., Hawkins, P. & Mendl, M. T. To group or not to group? Good practice for housing male laboratory mice. Animals 7, 88 (2017).

    PubMed Central  Google Scholar 

  50. Gallistel, C. R. The Organization of Learning (MIT Press, 1990).

  51. Sousa, N., Almeida, O. & Wotjak, C. A hitchhiker’s guide to behavioral analysis in laboratory rodents. Genes Brain Behav. 5, 5–24 (2006).

    PubMed  Google Scholar 

  52. Walsh, R. N. & Cummins, R. A. The open-field test: a critical review. Psychol. Bull. 83, 482 (1976).

    CAS  PubMed  Google Scholar 

  53. Simon, P., Dupuis, R. & Costentin, J. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav. Brain Res. 61, 59–64 (1994).

    CAS  PubMed  Google Scholar 

  54. Kolb, B. Some tests of response habituation in rats with discrete lesions to the orbital or medial frontal cortex. Can. J. Psychol. 28, 260 (1974).

    CAS  PubMed  Google Scholar 

  55. Klein, J. et al. Lesion of the medial prefrontal cortex and the subthalamic nucleus selectively affect depression-like behavior in rats. Behav. Brain Res. 213, 73–81 (2010).

    PubMed  Google Scholar 

  56. Godsil, B. P., Stefanacci, L. & Fanselow, M. S. Bright light suppresses hyperactivity induced by excitotoxic dorsal hippocampus lesions in the rat. Behav. Neurosci. 119, 1339–1352 (2005).

    PubMed  Google Scholar 

  57. Broadbent, N. J., Gaskin, S., Squire, L. R. & Clark, R. E. Object recognition memory and the rodent hippocampus. Learn. Mem. 17, 5–11 (2010).

    PubMed  PubMed Central  Google Scholar 

  58. Antunes, M. & Biala, G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn. Process. 13, 93–110 (2012).

    CAS  PubMed  Google Scholar 

  59. Pennington, Z. T. et al. ezTrack: an open-source video analysis pipeline for the investigation of animal behavior. Sci. Rep. 9, 19979 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    CAS  PubMed  Google Scholar 

  61. Sridhar, V. H., Roche, D. G. & Gingins, S. Tracktor: image-based automated tracking of animal movement and behaviour. Methods Ecol. Evol. 10, 815–820 (2019).

    Google Scholar 

  62. Drai, D., Kafkafi, N., Benjamini, Y., Elmer, G. & Golani, I. Rats and mice share common ethologically relevant parameters of exploratory behavior. Behav. Brain Res. 125, 133–140 (2001).

    CAS  PubMed  Google Scholar 

  63. Akkerman, S. et al. Object recognition testing: methodological considerations on exploration and discrimination measures. Behav. Brain Res. 232, 335–347 (2012).

    PubMed  Google Scholar 

Download references

Acknowledgements

The protocols described are those that are currently used in our laboratories, and they were written by current members of the research group. The research leading to these results has received support from: Canada First Research Excellence Fund BrainsCAN; Natural Sciences and Engineering Research Council (NSERC); Biotechnology and Biological Sciences Research Council (grant BB/G019002/1); Innovative Medicine Initiative Joint Undertaking under grant agreement number 115008, of which resources are composed of European Federation of Pharmaceutical Industries and Associations (EFPIA) in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013); Australian Research Council (DE140101301 and DP180101974).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the manuscript. A.C.R. coordinated this effort.

Corresponding authors

Correspondence to Amy C. Reichelt or Timothy J. Bussey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Arjan Blokland, Thomas Freret and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Bekinschtein, P. et al. Cell Rep. 5, 759–768 (2013): https://doi.org/10.1016/j.celrep.2013.09.027

Bonafina, A. et al. Cell Rep. 29, 4308–4319 (2019): https://doi.org/10.1016/j.celrep.2019.11.100

Reichelt, A.C. et al. Learn. Mem. 23, 386–390 (2016): https://doi.org/10.1101/lm.042416.116

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Source data

Source Data Fig. 5

Statistical source data and raw data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reichelt, A.C., Kramar, C.P., Ghosh-Swaby, O.R. et al. The spontaneous location recognition task for assessing spatial pattern separation and memory across a delay in rats and mice. Nat Protoc 16, 5616–5633 (2021). https://doi.org/10.1038/s41596-021-00627-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00627-w

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing