Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

3D bioprinted silk fibroin hydrogels for tissue engineering

Abstract

The development of biocompatible and precisely printable bioink addresses the growing demand for three-dimensional (3D) bioprinting applications in the field of tissue engineering. We developed a methacrylated photocurable silk fibroin (SF) bioink for digital light processing 3D bioprinting to generate structures with high mechanical stability and biocompatibility for tissue engineering applications. Procedure 1 describes the synthesis of photocurable methacrylated SF bioink, which takes 2 weeks to complete. Digital light processing is used to fabricate 3D hydrogels using the bioink (1.5 h), which are characterized in terms of methacrylation, printability, mechanical and rheological properties, and biocompatibility. The physicochemical properties of the bioink can be modulated by varying photopolymerization conditions such as the degree of methacrylation, light intensity, and concentration of the photoinitiator and bioink. The versatile bioink can be used broadly in a range of applications, including nerve tissue engineering through co-polymerization of the bioink with graphene oxide, and for wound healing as a sealant. Procedure 2 outlines how to apply 3D-printed SF hydrogels embedded with chondrocytes and turbinate-derived mesenchymal stem cells in one specific in vivo application, trachea tissue engineering, which takes 2–9 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the procedure for fabrication of Sil-MA bioink and Sil-MA hydrogel using a DLP 3D printer.
Fig. 2: Photographs of the process for preparation of Sil-MA bioink and hydrogel.
Fig. 3: Printability of Sil-MA bioink and its application for cartilage tissue engineering.
Fig. 4: Process flow for trachea tissue engineering using DLP 3D printed cell-laden Sil-MA hydrogel36.
Fig. 5: Trachea tissue engineering using DLP 4D bioprinted cell-laden Sil-MA hydrogel70.
Fig. 6: Application of Sil-MA bioink as an electroconductive bioink for neurogenesis71.
Fig. 7: Characterization of Sil-MA solution and Sil-MA hydrogel fabricated by DLP 3D printer17.
Fig. 8: Physical, morphological and biological characterization of Sil-MA hydrogel fabricated using DLP 3D printer17.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research papers: ref. 17 (https://doi.org/10.1038/s41467-018-03759-y), ref. 36(https://doi.org/10.1016/j.biomaterials.2019.119679), ref. 70 (https://doi.org/10.1016/j.biomaterials.2020.120281), ref. 71 (https://doi.org/10.1021/acs.nanolett.0c02986), and ref. 68 (https://doi.org/10.1038/s41427-020-0227-6).

References

  1. Ng, W. L., Chua, C. K. & Shen, Y.-F. Print me an organ! Why we are not there yet. Prog. Polym. Sci. 97, 101145 (2019).

    Article  CAS  Google Scholar 

  2. Matai, I., Kaur, G., Seyedsalehi, A., McClinton, A. & Laurencin, C. T. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226, 119536 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Mandrycky, C., Wang, Z., Kim, K. & Kim, D.-H. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 34, 422–434 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Axpe, E. & Oyen, M. L. Applications of alginate-based bioinks in 3D bioprinting. Int. J. Mol. Sci. 17, 1976 (2016).

    Article  PubMed Central  Google Scholar 

  5. Shao, Z. & Vollrath, F. Surprising strength of silkworm silk. Nature 418, 741–741 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Müller, M., Becher, J., Schnabelrauch, M. & Zenobi-Wong, M. Nanostructured pluronic hydrogels as bioinks for 3D bioprinting. Biofabrication 7, 035006 (2015).

    Article  PubMed  Google Scholar 

  7. Wang, Z. et al. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7, 045009 (2015).

    Article  PubMed  Google Scholar 

  8. Takagi, D. et al. High-precision three-dimensional inkjet technology for live cell bioprinting. Int. J. Bioprinting 5, 208 (2019).

    Article  Google Scholar 

  9. Ng, W. L., Lee, J. M., Yeong, W. Y. & Naing, M. W. Microvalve-based bioprinting–process, bio-inks and applications. Biomater. Sci. 5, 632–647 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Guillotin, B. et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31, 7250–7256 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Ozbolat, I. T. & Hospodiuk, M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76, 321–343 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Gupta, S. et al. Evaluation of silk‐based bioink during pre and post 3D bioprinting: a review. J. Biomed. Mater. Res. B Appl. Biomater. 109, 279–293 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Singh, Y. P., Bandyopadhyay, A. & Mandal, B. B. 3D bioprinting using cross-linker-free silk–gelatin bioink for cartilage tissue engineering. ACS Appl. Mater. Interfaces 11, 33684–33696 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Ng, W. L. et al. Vat polymerization-based bioprinting—process, materials, applications and regulatory challenges. Biofabrication 12, 022001 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, J., Hu, Q., Wang, S., Tao, J. & Gou, M. Digital light processing based three-dimensional printing for medical applications. Int. J. Bioprinting 6, 242 (2020).

    Google Scholar 

  16. Wu, C., Wang, B., Zhang, C., Wysk, R. A. & Chen, Y.-W. Bioprinting: an assessment based on manufacturing readiness levels. Crit. Rev. Biotechnol. 37, 333–354 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Kim, S. H. et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat. Commun. 9, 1620 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lu, Y., Mapili, G., Suhali, G., Chen, S. & Roy, K. A digital micro‐mirror device‐based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Res. A 77, 396–405 (2006).

    Article  PubMed  Google Scholar 

  19. Zhu, W. et al. 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol. 40, 103–112 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Grogan, S. P. et al. Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomater. 9, 7218–7226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin, H. et al. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 34, 331–339 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Lam, T. et al. Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue‐engineered cartilage. J. Biomed. Mater. Res. B Appl. Biomater. 107, 2649–2657 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Soman, P., Chung, P. H., Zhang, A. P. & Chen, S. Digital microfabrication of user‐defined 3D microstructures in cell‐laden hydrogels. Biotechnol. Bioeng. 110, 3038–3047 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, A. P. et al. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv. Mater. 24, 4266–4270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Melke, J., Midha, S., Ghosh, S., Ito, K. & Hofmann, S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 31, 1–16 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Ju, H. W. et al. Silk fibroin based hydrogel for regeneration of burn induced wounds. Tissue Eng. Regen. Med. 11, 203–210 (2014).

    Article  CAS  Google Scholar 

  27. Qi, Y. et al. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int. J. Mol. Sci. 18, 237 (2017).

    Article  PubMed Central  Google Scholar 

  28. Kim, S. H., Kim, D. Y., Lim, T. H. & Park, C. H. Silk fibroin bioinks for digital light processing (DLP) 3D bioprinting. Adv. Exp. Med. Biol. 1249, 53–66 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Kambe, Y. et al. Beta-sheet content significantly correlates with the biodegradation time of silk fibroin hydrogels showing a wide range of compressive modulus. Polym. Degrad. Stab. 179, 109240 (2020).

    Article  CAS  Google Scholar 

  30. Cao, Z., Chen, X., Yao, J., Huang, L. & Shao, Z. The preparation of regenerated silk fibroin microspheres. Soft Matter 3, 910–915 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Sheikh, F. A. et al. 3D electrospun silk fibroin nanofibers for fabrication of artificial skin. Nanomed. Nanotechnol. Biol. Med. 11, 681–691 (2015).

    Article  CAS  Google Scholar 

  32. Lee, J. M. et al. Artificial auricular cartilage using silk fibroin and polyvinyl alcohol hydrogel. Int. J. Mol. Sci. 18, 1707 (2017).

    Article  PubMed Central  Google Scholar 

  33. Kim, J.-H. et al. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering. Int. J. Biol. Macromol. 82, 160–167 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Chung, E. J., Ju, H. W., Park, H. J. & Park, C. H. Three‐layered scaffolds for artificial esophagus using poly (ɛ‐caprolactone) nanofibers and silk fibroin: An experimental study in a rat model. J. Biomed. Mater. Res. A 103, 2057–2065 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, M. C. et al. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 104, 508–514 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Hong, H. et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials 232, 119679 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Q., Han, G., Yan, S. & Zhang, Q. 3D printing of silk fibroin for biomedical applications. Materials 12, 504 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  38. Oliveira, J. M. et al. Current and future trends of silk fibroin-based bioinks in 3D printing. J. 3D Print. Med. 4, 69–73 (2020).

    Article  CAS  Google Scholar 

  39. Das, S. et al. Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater. 11, 233–246 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Shi, W. et al. Structurally and functionally optimized silk‐fibroin–gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo. Adv. Mater. 29, 1701089 (2017).

    Article  Google Scholar 

  41. Sharma, A. et al. Investigating the role of sustained calcium release in silk-gelatin-based three-dimensional bioprinted constructs for enhancing the osteogenic differentiation of human bone marrow derived mesenchymal stromal cells. ACS Biomater. Sci. Eng. 5, 1518–1533 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Mehrotra, S. et al. Nonmulberry silk based ink for fabricating mechanically robust cardiac patches and endothelialized myocardium‐on‐a‐chip application. Adv. Funct. Mater. 30, 1907436 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zheng, Z. et al. 3D bioprinting of self‐standing silk‐based bioink. Adv. Healthc. Mater. 7, 1701026 (2018).

    Article  Google Scholar 

  44. Nguyễn, T.T., Ratanavaraporn, J. & Yodmuang, S. Alginate-silk fibroin bioink: a printable hydrogel for tissue engineering. in 2019 12th Biomedical Engineering International Conference (BMEiCON) 1–4 (IEEE, 2019).

  45. Compaan, A. M., Christensen, K. & Huang, Y. Inkjet bioprinting of 3D silk fibroin cellular constructs using sacrificial alginate. ACS Biomater. Sci. Eng. 3, 1519–1526 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Jiang, J.-P. et al. Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury. Neural Regen. Res. 15, 959 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, H. et al. Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration. Mater. Sci. Eng. C. 84, 140–147 (2018).

    Article  CAS  Google Scholar 

  48. Na, K. et al. Effect of solution viscosity on retardation of cell sedimentation in DLP 3D printing of gelatin methacrylate/silk fibroin bioink. J. Ind. Eng. Chem. 61, 340–347 (2018).

    Article  CAS  Google Scholar 

  49. Kwak, H., Shin, S., Lee, H. & Hyun, J. Formation of a keratin layer with silk fibroin-polyethylene glycol composite hydrogel fabricated by digital light processing 3D printing. J. Ind. Eng. Chem. 72, 232–240 (2019).

    Article  CAS  Google Scholar 

  50. Shin, S., Kwak, H. & Hyun, J. Melanin nanoparticle-incorporated silk fibroin hydrogels for the enhancement of printing resolution in 3D-projection stereolithography of poly (ethylene glycol)-tetraacrylate bio-ink. ACS Appl. Mater. Interfaces 10, 23573–23582 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Lee, H., Shin, D., Shin, S. & Hyun, J. Effect of gelatin on dimensional stability of silk fibroin hydrogel structures fabricated by digital light processing 3D printing. J. Ind. Eng. Chem. 89, 119–127 (2020).

    Article  CAS  Google Scholar 

  52. Piluso, S. et al. Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinking. J. Mater. Chem. B 8, 9566–9575 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Lee, O. J. et al. Biodegradation behavior of silk fibroin membranes in repairing tympanic membrane perforations. J. Biomed. Mater. Res. A 100, 2018–2026 (2012).

    Article  PubMed  Google Scholar 

  54. Yoshimizu, H. & Asakura, T. Preparation and characterization of silk fibroin powder and its application to enzyme immobilization. J. Appl. Polym. Sci. 40, 127–134 (1990).

    Article  CAS  Google Scholar 

  55. Park, Y. R. et al. Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. Int. J. Biol. Macromol. 93, 1567–1574 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Park, H. J. et al. Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction. Int. J. Biol. Macromol. 78, 215–223 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Irawan, V., Sung, T.-C., Higuchi, A. & Ikoma, T. Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development. Tissue Eng. Regen. Med. 15, 673–697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Miyaguchi, Y. & Hu, J. Physicochemical properties of silk fibroin after solubilization using calcium chloride with or without ethanol. Food Sci. Technol. Res. 11, 37–42 (2005).

    Article  CAS  Google Scholar 

  59. Zhang, X., Reagan, M. R. & Kaplan, D. L. Electrospun silk biomaterial scaffolds for regenerative medicine. Adv. Drug Deliv. Rev. 61, 988–1006 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tao, H. et al. Inkjet printing of regenerated silk fibroin: from printable forms to printable functions. Adv. Mater. 27, 4273–4279 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Sashina, E., Bochek, A., Novoselov, N. & Kirichenko, D. Structure and solubility of natural silk fibroin. Russ. J. Appl. Chem. 79, 869–876 (2006).

    Article  CAS  Google Scholar 

  62. Gulrez, S. K. H., Al-Assaf, S. & Phillips, G. O. Hydrogels: methods of preparation, characterisation and applications. in Progress in Molecular and Environmental Bioengineering: From Analysis and Modeling to Technology Applications, 117–150 (IntechOpen, 2011).

  63. Nguyen, T. P. et al. Silk fibroin-based biomaterials for biomedical applications: a review. Polymers 11, 1933 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  64. Sun, M. et al. Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue. Polymers 10, 1290 (2018).

    Article  PubMed Central  Google Scholar 

  65. Reis, A. V. et al. Reaction of glycidyl methacrylate at the hydroxyl and carboxylic groups of poly (vinyl alcohol) and poly (acrylic acid): is this reaction mechanism still unclear? J. Org. Chem. 74, 3750–3757 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Wang, Z., Jin, X., Dai, R., Holzman, J. F. & Kim, K. An ultrafast hydrogel photocrosslinking method for direct laser bioprinting. RSC Adv. 6, 21099–21104 (2016).

    Article  CAS  Google Scholar 

  67. Vashist, A. et al. Bioresponsive injectable hydrogels for on-demand drug release and tissue engineering. Curr. Pharm. Des. 23, 3595–3602 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim, S. H. et al. Rapidly photocurable silk fibroin sealant for clinical applications. NPG Asia Mater. 12, 1–16 (2020).

    Article  CAS  Google Scholar 

  69. Naresh, K. & Utpal, B. Silk fibroin in tissue engineering. Adv. Healthc. Mater. 1, 393–412 (2012).

    Article  Google Scholar 

  70. Kim, S. H. et al. 4D-bioprinted silk hydrogels for tissue engineering. Biomaterials 260, 120281 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Ajiteru, O. et al. A 3D printable electroconductive biocomposite bioink based on silk fibroin-conjugated graphene oxide. Nano Lett. 20, 6873–6883 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Van Den Bulcke, A. I. et al. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1, 31–38 (2000).

    Article  Google Scholar 

  73. Yue, K. et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254–271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, X., Zhang, J., Kawazoe, N. & Chen, G. Fabrication of highly crosslinked gelatin hydrogel and its influence on chondrocyte proliferation and phenotype. Polymers 9, 309 (2017).

    Article  PubMed Central  Google Scholar 

  75. Kim, H. et al. Effect of silk fibroin molecular weight on physical property of silk hydrogel. Polymer 90, 26–33 (2016).

    Article  CAS  Google Scholar 

  76. Ozbas, B., Kretsinger, J., Rajagopal, K., Schneider, J. P. & Pochan, D. J. Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 37, 7331–7337 (2004).

    Article  CAS  Google Scholar 

  77. Ladner-Keay, C. L., Griffith, B. J. & Wishart, D. S. Shaking alone induces de novo conversion of recombinant prion proteins to β-sheet rich oligomers and fibrils. PloS One 9, e98753 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kim, U.-J. et al. Structure and properties of silk hydrogels. Biomacromolecules 5, 786–792 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Xu, H., Casillas, J., Krishnamoorthy, S. & Xu, C. Effects of Irgacure 2959 and lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs. Biomed. Mater. 15, 055021 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Fairbanks, B. D., Schwartz, M. P., Bowman, C. N. & Anseth, K. S. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30, 6702–6707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xu, L., Sheybani, N., Yeudall, W. A. & Yang, H. The effect of photoinitiators on intracellular AKT signaling pathway in tissue engineering application. Biomater. Sci. 3, 250–255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wray, L. S. et al. Effect of processing on silk‐based biomaterials: reproducibility and biocompatibility. J. Biomed. Mater. Res. B Appl. Biomater. 99, 89–101 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kim, J. et al. Comparison of methods for the repair of acute tympanic membrane perforations: silk patch vs. paper patch. Wound Repair Regen. 18, 132–138 (2010).

    Article  PubMed  Google Scholar 

  84. Zhang, F. et al. Silk dissolution and regeneration at the nanofibril scale. J. Mater. Chem. B 2, 3879–3885 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Gupta, D., Agrawal, A., Chaudhary, H., Gulrajani, M. & Gupta, C. Cleaner process for extraction of sericin using infrared. J. Clean. Prod. 52, 488–494 (2013).

    Article  CAS  Google Scholar 

  86. Dou, H. & Zuo, B. Effect of sodium carbonate concentrations on the degumming and regeneration process of silk fibroin. J. Text. Inst. 106, 311–319 (2015).

    Article  CAS  Google Scholar 

  87. You, R., Zhang, Y., Liu, Y., Liu, G. & Li, M. The degradation behavior of silk fibroin derived from different ionic liquid solvents. Natural Science 5, 10–19 (2013).

    Article  CAS  Google Scholar 

  88. Murphy, A. R. & Kaplan, D. L. Biomedical applications of chemically-modified silk fibroin. J. Mater. Chem. 19, 6443–6450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mondal, M., Trivedy, K. & Nirmal, K. S. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn., a review. Caspian. J. Environ. Sci. 5, 63–76 (2007).

    Google Scholar 

  90. Nichol, J. W. et al. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5536–5544 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yadav, D. & Gaikwad, A. Comparison and testing of tensile strength for low & medium carbon steel. Int. J. Mech. Eng. 4, 1–8 (2015).

    Google Scholar 

  92. Fergg, F., Keil, F. & Quader, H. Investigations of the microscopic structure of poly (vinyl alcohol) hydrogels by confocal laser scanning microscopy. Colloid Polym. Sci. 279, 61–67 (2001).

    Article  CAS  Google Scholar 

  93. Lee, J. S. et al. 3D-printable photocurable bioink for cartilage regeneration of tonsil-derived mesenchymal stem cells. Addit. Manuf. 33, 101136 (2020).

    CAS  Google Scholar 

  94. Steehler, M. K., Hesham, H. N., Wycherly, B. J., Burke, K. M. & Malekzadeh, S. Induction of tracheal stenosis in a rabbit model—endoscopic versus open technique. Laryngoscope 121, 509–514 (2011).

    Article  PubMed  Google Scholar 

  95. Den Hondt, M., Vanaudenaerde, B. M., Delaere, P. & Vranckx, J. J. Twenty years of experience with the rabbit model, a versatile model for tracheal transplantation research. Plast. Aesthetic Res. 3, 223–230 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare, Republic of Korea (HI20C0408), the Industrial Technology Alchemist Project (20012327) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), and Hallym University Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to experimental work shown in this protocol. C.H.P. supervised the project and provided funding. S.H.K. conceived and managed the manuscript preparation. S.H.K., H.H., O.A. and M.T.S. drafted and revised the manuscript with input from all authors. Y.J.L., J.S.L., O.J.L., H.L., H.S.P., K.Y.C., J.S.L., H.W.J. and I.S.H. partially wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chan Hum Park.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Antonella Motta, Chengtie Wu and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Kim, S. H. et al. Nat. Commun. 9, 1–14 (2018): https://doi.org/10.1038/s41467-018-03759-y

Hong, H. et al. Biomaterials 232, 119679 (2020): https://doi.org/10.1016/j.biomaterials.2019.119679

Kim, S. H. et al. Biomaterials 260, 120281 (2020): https://doi.org/10.1016/j.biomaterials.2020.120281

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Supplementary Data 1

Square model for cytocompatibility test

Supplementary Data 2

Human trachea CAD model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.H., Hong, H., Ajiteru, O. et al. 3D bioprinted silk fibroin hydrogels for tissue engineering. Nat Protoc 16, 5484–5532 (2021). https://doi.org/10.1038/s41596-021-00622-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00622-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing