Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Extension
  • Published:

The GFP thermal shift assay for screening ligand and lipid interactions to solute carrier transporters

Abstract

Solute carrier (SLC) transporters represent the second-largest fraction of the membrane proteome after G-protein-coupled receptors, but have been underutilized as drug targets and the function of many members of this family is still unknown. They are technically challenging to work with as they are difficult to express and highly dynamic, making them unstable in detergent solution. Many SLCs lack known inhibitors that could be utilized for stabilization. Furthermore, as they bind their physiological substrates with high micromolar to low millimolar affinities, binding and transport assays have proven to be particularly challenging to implement. Previously, we reported a GFP-based method for the overexpression and purification of membrane proteins in Saccharomyces cerevisiae. Here, we extend this expression platform with the GFP thermal shift (GFP-TS) assay, which is a simplified version of fluorescence-detection size-exclusion chromatography that combines the sample versatility of fluorescence-detection size-exclusion chromatography with the high-throughput capability of dye-based thermal shift assays. We demonstrate how GFP-TS can be used for detecting specific ligand interactions of SLC transporter fusions and measuring their affinities in crude detergent-solubilized membranes. We further show how GFP-TS can be employed on purified SLC transporter fusions to screen for specific lipid–protein interactions, which is an important complement to native mass spectrometry approaches that cannot cope easily with crude lipid-mixture preparations. This protocol is simple to perform and can be followed by researchers with a basic background in protein chemistry. Starting with an SLC transporter construct that can be expressed and purified from S. cerevisiae in a well-folded state, this protocol extension can be completed in ~4–5 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart of the GFP-TS assay.
Fig. 2: Development and validation of the GFP-TS assay.
Fig. 3: Optimization of the GFP-TS assay.
Fig. 4: GFP-TS assay for functional characterization of hCST and deorphanization of a plant homolog.
Fig. 5: GFP-TS assay for ligand interaction studies to human SLC35A1 and a plant homolog.
Fig. 6: Monitoring lipid–protein interactions with FSEC-TS and GFP-TS.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Cesar-Razquin, A. et al. A call for systematic research on solute carriers. Cell 162, 478–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Lin, L., Yee, S. W., Kim, R. B. & Giacomini, K. M. SLC transporters as therapeutic targets: emerging opportunities. Nat. Rev. Drug Discov. 14, 543–560 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Drew, D. & Boudker, O. Shared molecular mechanisms of membrane transporters. Annu. Rev. Biochem. 85, 543–572 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Hediger, M. A. et al. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflug. Arch. 447, 465–468 (2004).

    Article  CAS  Google Scholar 

  5. Superti-Furga, G. et al. The RESOLUTE consortium: unlocking SLC transporters for drug discovery. Nat. Rev. Drug Discov. 19, 429–430 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Colas, C., Ung, P. M. & Schlessinger, A. SLC transporters: structure, function, and drug discovery. MedChemComm 7, 1069–1081 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Scheen, A. J. Sodium-glucose cotransporter type 2 inhibitors for the treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 16, 556–577 (2020).

    Article  PubMed  Google Scholar 

  8. Yu, H. B., Li, M., Wang, W. P. & Wang, X. L. High throughput screening technologies for ion channels. Acta Pharmacol. Sin. 37, 34–43 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Yasi, E. A., Kruyer, N. S. & Peralta-Yahya, P. Advances in G protein-coupled receptor high-throughput screening. Curr. Opin. Biotechnol. 64, 210–217 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Scalise, M., Pochini, L., Giangregorio, N., Tonazzi, A. & Indiveri, C. Proteoliposomes as tool for assaying membrane transporter functions and interactions with xenobiotics. Pharmaceutics 5, 472–497 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Majd, H. et al. Screening of candidate substrates and coupling ions of transporters by thermostability shift assays. eLife https://doi.org/10.7554/eLife.38821 (2018).

  12. Volpe, D. A. Transporter assays as useful in vitro tools in drug discovery and development. Expert Opin. Drug Discov. 11, 91–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Sonoda, Y. et al. Benchmarking membrane protein detergent stability for improving throughput of high-resolution X-ray structures. Structure 19, 17–25 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Drew, D. et al. GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nat. Protoc. 3, 784–798 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Newstead, S., Kim, H., von Heijne, G., Iwata, S. & Drew, D. High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 104, 13936–13941 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bazzone, A., Barthmes, M. & Fendler, K. SSM-based electrophysiology for transporter research. Methods Enzymol. 594, 31–83 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Amati, A. M., Graf, S., Deutschmann, S., Dolder, N. & von Ballmoos, C. Current problems and future avenues in proteoliposome research. Biochem. Soc. Trans. 48, 1473–1492 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Martinez Molina, D. & Nordlund, P. The cellular thermal shift assay: a novel biophysical assay for in situ drug target engagement and mechanistic biomarker studies. Annu. Rev. Pharmacol. Toxicol. 56, 141–161 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Alexandrov, A. I., Mileni, M., Chien, E. Y., Hanson, M. A. & Stevens, R. C. Microscale fluorescent thermal stability assay for membrane proteins. Structure 16, 351–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Lo, M. C. et al. Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal. Biochem. 332, 153–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Newstead, S. et al. Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J. 30, 417–426 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Hattori, M., Hibbs, R. E. & Gouaux, E. A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure 20, 1293–1299 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tomasiak, T. M. et al. General qPCR and plate reader methods for rapid optimization of membrane protein purification and crystallization using thermostability assays. Curr. Protoc. Protein Sci. 77, 29 11 21–14 (2014).

    Article  Google Scholar 

  24. Allison, T. M. et al. Quantifying the stabilizing effects of protein-ligand interactions in the gas phase. Nat. Commun. 6, 8551 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Crichton, P. G. et al. Trends in thermostability provide information on the nature of substrate, inhibitor, and lipid interactions with mitochondrial carriers. J. Biol. Chem. 290, 8206–8217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oates, J. et al. The role of cholesterol on the activity and stability of neurotensin receptor 1. Biochim. Biophys. Acta 1818, 2228–2233 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Nji, E., Chatzikyriakidou, Y., Landreh, M. & Drew, D. An engineered thermal-shift screen reveals specific lipid preferences of eukaryotic and prokaryotic membrane proteins. Nat. Commun. 9, 4253 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nji, E., Gulati, A., Qureshi, A. A., Coincon, M. & Drew, D. Structural basis for the delivery of activated sialic acid into Golgi for sialyation. Nat. Struct. Mol. Biol. 26, 415–423 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Almqvist, H. et al. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil. Nat. Commun. 7, 11040 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Savitski, M. M. et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346, 1255784 (2014).

    Article  PubMed  Google Scholar 

  31. Reinhard, F. B. et al. Thermal proteome profiling monitors ligand interactions with cellular membrane proteins. Nat. Methods 12, 1129–1131 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Carnero Corrales, M. A. et al. Thermal proteome profiling identifies the membrane-bound purinergic receptor P2X4 as a target of the autophagy inhibitor indophagolin. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2021.02.017 (2021).

  33. Hashimoto, M., Girardi, E., Eichner, R. & Superti-Furga, G. Detection of chemical engagement of solute carrier proteins by a cellular thermal shift assay. ACS Chem. Biol. 13, 1480–1486 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martens, C. et al. Direct protein-lipid interactions shape the conformational landscape of secondary transporters. Nat. Commun. 9, 4151 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bolla, J. R., Agasid, M. T., Mehmood, S. & Robinson, C. V. Membrane protein-lipid interactions probed using mass spectrometry. Annu. Rev. Biochem. 88, 85–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. van ‘t Klooster, J. S. et al. Membrane lipid requirements of the lysine transporter Lyp1 from Saccharomyces cerevisiae. J. Mol. Biol. 432, 4023–4031 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Scanlon, S. M., Williams, D. C. & Schloss, P. Membrane cholesterol modulates serotonin transporter activity. Biochemistry 40, 10507–10513 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Barrera, N. P., Zhou, M. & Robinson, C. V. The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell Biol. 23, 1–8 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Bechara, C. & Robinson, C. V. Different modes of lipid binding to membrane proteins probed by mass spectrometry. J. Am. Chem. Soc. 137, 5240–5247 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Cong, X. et al. Determining membrane protein-lipid binding thermodynamics using native mass spectrometry. J. Am. Chem. Soc. 138, 4346–4349 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Cong, X., Liu, Y., Liu, W., Liang, X. & Laganowsky, A. Allosteric modulation of protein-protein interactions by individual lipid binding events. Nat. Commun. 8, 2203 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gault, J. et al. High-resolution mass spectrometry of small molecules bound to membrane proteins. Nat. Methods 13, 333–336 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Winkelmann, I. et al. Structure and elevator mechanism of the mammalian sodium/proton exchanger NHE9. EMBO J. https://doi.org/10.15252/embj.2020105908 (2020).

  44. Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Drew, D., Lerch, M., Kunji, E., Slotboom, D. J. & de Gier, J. W. Optimization of membrane protein overexpression and purification using GFP fusions. Nat. Methods 3, 303–313 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Hu, N. J. et al. GFP-based expression screening of membrane proteins in insect cells using the baculovirus system. Methods Mol. Biol. 1261, 197–209 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Vedadi, M., Arrowsmith, C. H., Allali-Hassani, A., Senisterra, G. & Wasney, G. A. Biophysical characterization of recombinant proteins: a key to higher structural genomics success. J. Struct. Biol. 172, 107–119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bantscheff, M., Scholten, A. & Heck, A. J. Revealing promiscuous drug-target interactions by chemical proteomics. Drug Discov. Today 14, 1021–1029 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Kang, H. J., Lee, C. & Drew, D. Breaking the barriers in membrane protein crystallography. Int. J. Biochem. Cell Biol. 45, 636–644 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4, 706–731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mattle, D. et al. Ligand channel in pharmacologically stabilized rhodopsin. Proc. Natl Acad. Sci. USA 115, 3640–3645 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Landreh, M. et al. Integrating mass spectrometry with MD simulations reveals the role of lipids in Na+/H+ antiporters. Nat. Commun. 8, 13993 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gupta, K. et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bird, L. E. et al. Expression screening of integral membrane proteins by fusion to fluorescent reporters. Adv. Exp. Med. Biol. 922, 1–11 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Claesson and other present and former lab members for their input into the described protocol. This work was funded by grants from the Knut and Alice Wallenberg Foundation (KAW), the Novo Nordisk Foundation (no. 34188) and a European Research Council (ERC) Consolidator Grant EXCHANGE (grant no. ERC-CoG-820187) to D.D.

Author information

Authors and Affiliations

Authors

Contributions

The supporting experiments additional to those previously described in ref. 14 were carried out by Y.C. and D.A. The manuscript was prepared by all authors.

Corresponding author

Correspondence to David Drew.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Eric R. Geertsma, Dianfan Li and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Related links

Key references using this protocol

Nji, E. et al. Nat. Commun. 9, 4253 (2018): https://doi.org/10.1038/s41467-018-06702-3

Nji, E. et al. Nat. Struct. Mol. Biol. 26, 415–423 (2019): https://doi.org/10.1038/s41594-019-0225-y

Winkelmann, I. et al. EMBO J. 39, 4541–4559 (2020): https://doi.org/10.15252/embj.2020105908

This protocol is an extension to: Nat. Protoc. 3, 784–798, (2008): https://doi.org/10.1038/nprot.2008.44

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatzikyriakidou, Y., Ahn, DH., Nji, E. et al. The GFP thermal shift assay for screening ligand and lipid interactions to solute carrier transporters. Nat Protoc 16, 5357–5376 (2021). https://doi.org/10.1038/s41596-021-00619-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00619-w

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research