Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantitative magnetic resonance imaging and tumor forecasting of breast cancer patients in the community setting

Abstract

This protocol describes a complete data acquisition, analysis and computational forecasting pipeline for employing quantitative MRI data to predict the response of locally advanced breast cancer to neoadjuvant therapy in a community-based care setting. The methodology has previously been successfully applied to a heterogeneous patient population. The protocol details how to acquire the necessary images followed by registration, segmentation, quantitative perfusion and diffusion analysis, model calibration, and prediction. The data collection portion of the protocol requires ~25 min of scanning, postprocessing requires 2–3 h, and the model calibration and prediction components require ~10 h per patient depending on tumor size. The response of individual breast cancer patients to neoadjuvant therapy is forecast by application of a biophysical, reaction–diffusion mathematical model to these data. Successful application of the protocol results in coregistered MRI data from at least two scan visits that quantifies an individual tumor’s size, cellularity and vascular properties. This enables a spatially resolved prediction of how a particular patient’s tumor will respond to therapy. Expertise in image acquisition and analysis, as well as the numerical solution of partial differential equations, is required to carry out this protocol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the protocol.
Fig. 2: Timeline of MRI acquisition with an example standard-of-care NAT regimen for triple-negative breast cancer consisting of two therapeutic regimens.
Fig. 3: FCM clustering to generate a tumor ROI.
Fig. 4: Comparison of intervisit registration results with and without tumor ROI penalties incorporated into the registration scheme.
Fig. 5: Flowchart of the data analysis steps of the protocol.
Fig. 6: Example image acquisition results.
Fig. 7: Example results from the data analysis.
Fig. 8: Converting imaging data to physical quantities for the mathematical model.
Fig. 9: Results of the 3D model predictions (over three central slices, left column) compared with the observed results at the third scan time (right column) for one example patient.

Similar content being viewed by others

Data availability

We have made available one patient dataset that has been fully preprocessed (i.e., Steps 1–36) and ready for the calibration and prediction components (i.e., Steps 37–40). This will enable the interested investigator to verify that the calibration and prediction code is working on the individual investigator’s platform. The dataset is available at https://github.com/ChengyueWu/Quantitative-MRI-of-breast-cancer-patients-to-forecast-response-to-therapy.

Code availability

We have made the code for the calibration and prediction components (i.e., Steps 37–40) available without charge to anyone for academic, research, experimental or personal use. This code and license may be found at https://github.com/ChengyueWu/Quantitative-MRI-of-breast-cancer-patients-to-forecast-response-to-therapy. To distribute or make other use of the software, including commercial use, a license must be obtained from The University of Texas at Austin (by contacting licensing@otc.utexas.edu).

References

  1. Yankeelov, T. E. et al. Toward a science of tumor forecasting for clinical oncology. Cancer Res. 75, 918–923 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yankeelov, T. E. et al. Clinically relevant modeling of tumor growth and treatment response. Sci. Transl. Med. 5, 187ps9 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Rockne, R. C. et al. The 2019 mathematical oncology roadmap. Phys. Biol. 16, 041005 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alfonso, J. C. L. et al. The biology and mathematical modelling of glioma invasion: a review. J. R. Soc. Interface 14, 20170490 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chen, X., Summers, R. M. & Yao, J. Kidney tumor growth prediction by coupling reaction-diffusion and biomechanical model. IEEE Trans. Biomed. Eng. 60, 169–173 (2013).

    Article  PubMed  Google Scholar 

  6. Lorenzo, G. et al. Tissue-scale, personalized modeling and simulation of prostate cancer growth. Proc. Natl Acad. Sci. USA 113, E7663–E7671 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lorenzo, G. et al. Computer simulations suggest that prostate enlargement due to benign prostatic hyperplasia mechanically impedes prostate cancer growth. Proc. Natl Acad. Sci. USA 116, 1152–1161 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yuan, J. & Liu, L. Brain glioma growth model using reaction-diffusion equation with viscous stress tensor on brain MR images. Magn. Reson. Imaging 34, 114–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Rockne, R. et al. Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys. Med. Biol. 55, 3271–3285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Clatz, O. et al. Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans. Med. Imaging 24, 1334–1346 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baldock, A. L. et al. From patient-specific mathematical neuro-oncology to precision medicine. Front. Oncol. 3, 62 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mi, H. et al. Prediction of lung tumor evolution during radiotherapy in individual patients with PET. IEEE Trans. Med. Imaging 33, 995–1003 (2014).

    Article  PubMed  Google Scholar 

  13. Mi, H. et al. Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images. Med. Image Anal. 23, 84–91 (2015).

    Article  PubMed  Google Scholar 

  14. Liu, Y. X. et al. Patient specific tumor growth prediction using multimodal images. Med. Image Anal. 18, 555–566 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wong, K. C. et al. Pancreatic tumor growth prediction with elastic-growth decomposition, image-derived motion, and FDM-FEM coupling. IEEE Trans. Med. Imaging 36, 111–123 (2017).

    Article  PubMed  Google Scholar 

  16. Liu, Y. et al. Multimodal image driven patient specific tumor growth modeling. Med. Image Comput. Comput. Assist. Interv. 16, 283–290 (2013).

    PubMed  Google Scholar 

  17. Wong, K. C. et al. Tumor growth prediction with reaction-diffusion and hyperelastic biomechanical model by physiological data fusion. Med. Image Anal. 25, 72–85 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Atuegwu, N. C. et al. Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth. Phys. Med. Biol. 57, 225–240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Atuegwu, N. C., Gore, J. C. & Yankeelov, T. E. The integration of quantitative multi-modality imaging data into mathematical models of tumors. Phys. Med. Biol. 55, 2429–2449 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Atuegwu, N. C. et al. Parameterizing the logistic model of tumor growth by DW-MRI and DCE-MRI data to predict treatment response and changes in breast cancer cellularity during neoadjuvant chemotherapy. Transl. Oncol. 6, 256–264 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Weis, J. A. et al. A mechanically coupled reaction-diffusion model for predicting the response of breast tumors to neoadjuvant chemotherapy. Phys. Med. Biol. 58, 5851–5866 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Weis, J. A. et al. Predicting the response of breast cancer to neoadjuvant therapy using a mechanically coupled reaction-diffusion model. Cancer Res. 75, 4697–4707 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weis, J. A., Miga, M. I. & Yankeelov, T. E. Three-dimensional image-based mechanical modeling for predicting the response of breast cancer to neoadjuvant therapy. Comput. Methods Appl. Mech. Eng. 314, 494–512 (2017).

    Article  PubMed  Google Scholar 

  24. Jarrett, A. M. et al. Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: theory and preliminary clinical results. Phys. Med. Biol. 63, 105015 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jarrett, A. M. et al. Towards integration of 64Cu-DOTA-Trasztusumab PET-CT and MRI with mathematical modeling to predict response to neoadjuvant therapy in HER2+ breast cancer. Sci. Rep. 10, 20518 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jarrett, A. M. et al. Evaluating patient-specific neoadjuvant regimens for breast cancer via a mathematical model constrained by quantitative magnetic resonance imaging data. Neoplasia 22, 820–830 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Atuegwu, N. C. et al. Integration of diffusion-weighted MRI data and a simple mathematical model to predict breast tumor cellularity during neoadjuvant chemotherapy. Magn. Reson. Med. 66, 1689–1696 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jarrett, A. M. et al. Optimal control theory for personalized therapeutic regimens in oncology: background, history, challenges, and opportunities. J. Clin. Med. 9, 1314 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  29. Copur, M. S. et al. Impact of the National Cancer Institute Community Cancer Centers Program on clinical trial and related activities at a community cancer center in rural Nebraska. J Oncol. Pract. 12, 67–68 (2016). e44-51.

    Article  PubMed  Google Scholar 

  30. Hormuth, D. A. et al. Mechanism-based modeling of tumor growth and treatment response constrained by multiparametric imaging data. JCO Clin. Cancer Inform. 3, 1–10 (2019).

    Article  PubMed  Google Scholar 

  31. Yankeelov, T. E., Pickens, D. R. & Price, R. R. Quantitative MRI in Cancer (CRC Press, 2012).

  32. Huang, W. et al. Variations of dynamic contrast-enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge. Transl. Oncol. 7, 153–166 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bane, O. et al. Accuracy, repeatability, and interplatform reproducibility of T. Magn. Reson. Med. 79, 2564–2575 (2018).

    Article  PubMed  Google Scholar 

  34. Newitt, D. C. et al. Multisite concordance of apparent diffusion coefficient measurements across the NCI Quantitative Imaging Network. J. Med. Imaging (Bellingham) 5, 011003 (2018).

    Google Scholar 

  35. Bell, L. C. et al. Evaluating multisite rCBV consistency from DSC-MRI imaging protocols and postprocessing software across the NCI quantitative imaging network sites using a digital reference object (DRO). Tomography 5, 110–117 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yankeelov, T. E. et al. Quantitative imaging in cancer clinical trials. Clin. Cancer Res. 22, 284–290 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sorace, A. G. et al. Repeatability, reproducibility, and accuracy of quantitative MRI of the breast in the community radiology setting. J. Magn. Reson. Imaging https://doi.org/10.1002/jmri.26011(2018).

  38. Virostko, J. et al. Magnetization transfer MRI of breast cancer in the community setting: reproducibility and preliminary results in neoadjuvant therapy. Tomography 5, 44–52 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jones, K. M., Pagel, M. D. & Cárdenas-Rodríguez, J. Linearization improves the repeatability of quantitative dynamic contrast-enhanced MRI. Magn. Reson. Imaging 47, 16–24 (2018).

    Article  PubMed  Google Scholar 

  40. Li, X. et al. Multiparametric magnetic resonance imaging for predicting pathological response after the first cycle of neoadjuvant chemotherapy in breast cancer. Invest. Radiol. 50, 195–204 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, Y. et al. Early prediction of response to neoadjuvant chemotherapy using dynamic contrast-enhanced MRI and ultrasound in breast cancer. Korean J. Radiol. 19, 682–691 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ah-See, M. L. et al. Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin. Cancer Res. 14, 6580–6589 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Padhani, A. R. et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11, 102–125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Galbán, C. J. et al. Multi-site clinical evaluation of DW-MRI as a treatment response metric for breast cancer patients undergoing neoadjuvant chemotherapy. PLoS One 10, e0122151 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Partridge, S. C. et al. Diffusion-weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: the ACRIN 6698 multicenter trial. Radiology 289, 618–627 (2018).

    Article  PubMed  Google Scholar 

  46. McKnight, A. L. et al. MR elastography of breast cancer: preliminary results. AJR Am. J. Roentgenol. 178, 1411–1417 (2002).

    Article  PubMed  Google Scholar 

  47. Hormuth, D. A. et al. A mechanically coupled reaction-diffusion model that incorporates intra-tumoural heterogeneity to predict in vivo glioma growth. J. R. Soc. Interface 14, 20161010 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hormuth, D. A. II et al. Biophysical modeling of in vivo glioma response following whole brain radiotherapy in a murine model of brain cancer. Int. J. Radiat. Oncol. Biol. Phys. 100, 1270–1279 (2018).

    Article  PubMed  Google Scholar 

  49. Hormuth, D. A. et al. Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data. Phys. Biol. 12, 046006 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hormuth, D. A. et al. Mechanically coupled reaction-diffusion model to predict glioma growth: methodological details. Methods Mol. Biol. 1711, 225–241 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hormuth, D. II et al. Predicting in vivo tumor growth and angiogenesis with an MRI calibrated biophysical model. Neuro-Oncol. 19, vi23 (2017).

    Article  PubMed Central  Google Scholar 

  52. Swanson, K. R., Alvord, E. C. & Murray, J. D. Quantifying efficacy of chemotherapy of brain tumors with homogeneous and heterogeneous drug delivery. Acta Biotheor. 50, 223–237 (2002).

    Article  PubMed  Google Scholar 

  53. Kim, M., Gillies, R. J. & Rejniak, K. A. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Front. Oncol. 3, 278 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Owen, M. R. et al. Mathematical modeling predicts synergistic antitumor effects of combining a macrophage-based, hypoxia-targeted gene therapy with chemotherapy. Cancer Res. 71, 2826–2837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shah, A. B., Rejniak, K. A. & Gevertz, J. L. Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. Math. Biosci. Eng. 13, 1185–1206 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bernstein, M. A., King, K. F. & Zhou, X. J. Handbook of MRI Pulse Sequences (Elsevier, 2004).

  57. Nishimura, D. G. Principles of Magnetic Resonance Imaging (Stanford University, 1996).

  58. Whisenant, J. G. et al. Bloch-Siegert B1-mapping improves accuracy and precision of longitudinal relaxation measurements in the breast at 3 T. Tomography 2, 250–259 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yankeelov, T. E. & Gore, J. C. Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. Curr. Med. Imaging Rev. 3, 91–107 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shukla-Dave, A. et al. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J. Magn. Reson. Imaging 49, e101–e121 (2019).

    Article  PubMed  Google Scholar 

  61. Wu, C. et al. Quantitative analysis of vascular properties derived from ultrafast DCE-MRI to discriminate malignant and benign breast tumors. Magn. Reson. Med. 81, 2147–2160 (2019).

    Article  PubMed  Google Scholar 

  62. Chen, W., Giger, M. L. & Bick, U. A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images. Acad. Radiol. 13, 63–72 (2006).

    Article  PubMed  Google Scholar 

  63. Li, X. et al. Validation of an algorithm for the nonrigid registration of longitudinal breast MR images using realistic phantoms. Med. Phys. 37, 2541–2552 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gubern-Mérida, A. et al. Automated localization of breast cancer in DCE-MRI. Med. Image Anal. 20, 265–274 (2015).

    Article  PubMed  Google Scholar 

  65. Staring, M., Klein, S. & Pluim, J. P. A rigidity penalty term for nonrigid registration. Med. Phys. 34, 4098–4108 (2007).

    Article  PubMed  Google Scholar 

  66. Li, X. et al. Statistical comparison of dynamic contrast-enhanced MRI pharmacokinetic models in human breast cancer. Magn. Reson. Med. 68, 261–271 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Li, X. et al. A novel AIF tracking method and comparison of DCE-MRI parameters using individual and population-based AIFs in human breast cancer. Phys. Med. Biol. 56, 5753–5769 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yankeelov, T. E. et al. Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn. Reson. Imaging 23, 519–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Li, K. L. et al. Kinetic assessment of breast tumors using high spatial resolution signal enhancement ratio (SER) imaging. Magn. Reson. Med. 58, 572–581 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sorace, A. G. et al. Distinguishing benign and malignant breast tumors: preliminary comparison of kinetic modeling approaches using multi-institutional dynamic contrast-enhanced MRI data from the International Breast MR Consortium 6883 trial. J. Med. Imaging (Bellingham) 5, 011019 (2018).

    Google Scholar 

  71. Li, K. L. et al. Invasive breast cancer: predicting disease recurrence by using high-spatial-resolution signal enhancement ratio imaging. Radiology 248, 79–87 (2008).

    Article  PubMed  Google Scholar 

  72. Whisenant, J. G. et al. Assessing reproducibility of diffusion-weighted magnetic resonance imaging studies in a murine model of HER2+ breast cancer. Magn. Reson. Imaging 32, 245–249 (2014).

    Article  PubMed  Google Scholar 

  73. Sugahara, T. et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J. Magn. Reson. Imaging 9, 53–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Anderson, A. W. et al. Effects of cell volume fraction changes on apparent diffusion in human cells. Magn. Reson. Imaging 18, 689–695 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Guo, Y. et al. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J. Magn. Reson. Imaging 16, 172–178 (2002).

    Article  PubMed  Google Scholar 

  76. Humphries, P. D. et al. Tumors in pediatric patients at diffusion-weighted MR imaging: apparent diffusion coefficient and tumor cellularity. Radiology 245, 848–854 (2007).

    Article  PubMed  Google Scholar 

  77. Barnes, S. L. et al. Correlation of tumor characteristics derived from DCE-MRI and DW-MRI with histology in murine models of breast cancer. NMR Biomed. 28, 1345–1356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Latour, L. L. et al. Time-dependent diffusion of water in a biological model system. Proc. Natl Acad. Sci. USA 91, 1229–1233 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. van der Toorn, A. et al. Dynamic changes in water ADC, energy metabolism, extracellular space volume, and tortuosity in neonatal rat brain during global ischemia. Magn. Reson. Med. 36, 52–60 (1996).

    Article  PubMed  Google Scholar 

  80. Xu, J. et al. Magnetic resonance imaging of mean cell size in human breast tumors. Magn. Reson. Med. 83, 2002–2014 (2020).

    Article  PubMed  Google Scholar 

  81. Reynaud, O. et al. Surface-to-volume ratio mapping of tumor microstructure using oscillating gradient diffusion weighted imaging. Magn. Reson. Med. 76, 237–247 (2016).

    Article  PubMed  Google Scholar 

  82. Bedair, R. et al. Assessment of early treatment response to neoadjuvant chemotherapy in breast cancer using non-mono-exponential diffusion models: a feasibility study comparing the baseline and mid-treatment MRI examinations. Eur. Radiol. 27, 2726–2736 (2017).

    Article  PubMed  Google Scholar 

  83. Virostko, J. et al. The rate of breast fibroglandular enhancement during dynamic contrast-enhanced MRI reflects response to neoadjuvant therapy. Eur. J. Radiol. 136, 109534 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hormuth, D. A. et al. Abstract 5487: a biologically-motivated mathematical model for forecasting chemoradiationresponse in high grade gliomas: initial results. Cancer Res. 80, 5487 (2020).

    Article  Google Scholar 

  85. Barnes, S.L. et al. DCE- and DW-MRI as early imaging biomarkers of treatment response in a preclinical model of triple negative breast cancer. NMR Biomed. https://doi.org/10.1002/nbm.3799 (2017).

  86. Whisenant, J. G. et al. Evaluating treatment response using DW-MRI and DCE-MRI in trastuzumab responsive and resistant HER2-overexpressing human breast cancer xenografts. Transl. Oncol. 7, 768–779 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hormuth, D. A. et al. Calibrating a predictive model of tumor growth and angiogenesis with quantitative MRI. Ann. Biomed. Eng. 47, 1539–1551 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hormuth, D. A., Jarrett, A. M. & Yankeelov, T. E. Forecasting tumor and vasculature response dynamics to radiation therapy via image based mathematical modeling. Radiat. Oncol. 15, 4 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Valdora, F. et al. Rapid review: radiomics and breast cancer. Breast Cancer Res. Treat. 169, 217–229 (2018).

    Article  PubMed  Google Scholar 

  90. Gillies, R. J., Kinahan, P. E. & Hricak, H. Radiomics: images are more than pictures, they are data. Radiology 278, 563–577 (2016).

    Article  PubMed  Google Scholar 

  91. Gillies, R. J. & Balagurunathan, Y. Perfusion MR imaging of breast cancer: insights using “habitat imaging”. Radiology 288, 36–37 (2018).

    Article  PubMed  Google Scholar 

  92. Syed, A. K. et al. Multiparametric analysis of longitudinal quantitative MRI data to identify distinct tumor habitats in preclinical models of breast cancer. Cancers (Basel) 12, 1682 (2020).

    Article  CAS  Google Scholar 

  93. Onishi, N. et al. Ultrafast dynamic contrast-enhanced mri of the breast using compressed sensing: breast cancer diagnosis based on separate visualization of breast arteries and veins. J. Magn. Reson. Imaging 47, 97–104 (2018).

    Article  PubMed  Google Scholar 

  94. Onishi, N. et al. Ultrafast dynamic contrast-enhanced breast MRI may generate prognostic imaging markers of breast cancer. Breast Cancer Res. 22, 58 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jarrett, A. M. et al. Mathematical models of tumor cell proliferation: a review of the literature. Expert Rev. Anticancer Ther. 18, 1271–1286 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Harris, P. A. et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42, 377–381 (2009).

    Article  PubMed  Google Scholar 

  97. Harris, P. A. et al. The REDCap consortium: building an international community of software platform partners. J. Biomed. Inform. 95, 103208 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Klein, S. et al. elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29, 196–205 (2010).

    Article  PubMed  Google Scholar 

  99. Li, X. et al. Analyzing spatial heterogeneity in DCE- and DW-MRI parametric maps to optimize prediction of pathologic response to neoadjuvant chemotherapy in breast cancer. Transl. Oncol. 7, 14–22 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Li, X. et al. A nonrigid registration algorithm for longitudinal breast MR images and the analysis of breast tumor response. Magn. Reson. Imaging 27, 1258–1270 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Atuegwu, N. C. et al. Longitudinal, intermodality registration of quantitative breast PET and MRI data acquired before and during neoadjuvant chemotherapy: preliminary results. Med. Phys. 41, 052302 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Chung, S. et al. Rapid B1+ mapping using a preconditioning RF pulse with TurboFLASH readout. Magn. Reson. Med. 64, 439–446 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sung, K. et al. Simultaneous T(1) and B(1) (+) mapping using reference region variable flip angle imaging. Magn. Reson. Med. 70, 954–961 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Pineda, F. D. et al. B1 and T1 mapping of the breast with a reference tissue method. Magn. Reson. Med. 75, 1565–1573 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Yu, Z. and C. Bajaj. A fast and adaptive method for image contrast enhancement. in International Conference on Image Processing (IEEE) 2, 1001–1004 (2004).

  106. Hagmann, P. et al. Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26, S205–S223 (2006).

    Article  PubMed  Google Scholar 

  107. Martin, I. et al. Computer-based technique for cell aggregation analysis and cell aggregation in in vitro chondrogenesis. Cytometry 28, 141–146 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Das, C. M. et al. Dielectrophoretic segregation of different human cell types on microscope slides. Anal. Chem. 77, 2708–2719 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ohtsu, T. et al. Clinical pharmacokinetics and pharmacodynamics of paclitaxel: a 3-hour infusion versus a 24-hour infusion. Clin. Cancer Res. 1, 599–606 (1995).

    CAS  PubMed  Google Scholar 

  110. Juma, F. D., Rogers, H. J. & Trounce, J. R. Pharmacokinetics of cyclophosphamide and alkylating activity in man after intravenous and oral administration. Br. J. Clin. Pharmacol. 8, 209–217 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Green, R. F. et al. Plasma pharmacokinetics of adriamycin and adriamycinol: implications for the design of in vitro experiments and treatment protocols. Cancer Res. 43, 3417–3421 (1983).

    Google Scholar 

  112. Oguri, S. et al. Clinical pharmacokinetics of carboplatin. J. Clin. Pharmacol. 28, 208–215 (1988).

    Article  CAS  PubMed  Google Scholar 

  113. Marquardt, D. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1, 431–441 (1963).

    Article  Google Scholar 

  114. Woodall, R. T. et al. The effects of intravoxel contrast agent diffusion on the analysis of DCE-MRI data in realistic tissue domains. Magn. Reson. Med. 80, 330–340 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We offer a sincere thank you to all the women who volunteer to participate in our studies; your strength and courage are examples for all of us. We thank N. Atuegwu, S. Eldridge, X. Li, L. Arlinghaus and J. Weis for many significant contributions to developing early versions of the techniques employed in the protocol. We thank the National Cancer Institute for support via U01 CA174706 (T.E.Y.), R01CA186193 (T.E.Y.), U24CA226110 (T.E.Y.), U01CA154602 (T.E.Y.) and R01CA240589 (A.G.S.). We thank the Cancer Prevention and Research Institute of Texas (CPRIT) for funding through RR160005. T.E.Y. is a CPRIT Scholar of Cancer Research. We thank the American Cancer Society for funding through RSG-18-006-01-CCE (A.G.S). We thank the American Association of Physicists in Medicine for funding through the 2018 Research Seed Grant (D.A.H). We thank the National Institute of Biomedical Imaging and Bioengineering for supporting A.S.K. through T32 EB007507.

Author information

Authors and Affiliations

Authors

Contributions

T.E.Y. conceived the project and obtained funding. J.C.D., J.V., A.G.S. and T.E.Y developed the procedures for the MRI acquisition with input from D.P., B.G. and S.A. A.S.K., C.W., D.A.H. and D.A.E. developed procedures for the data processing with input from A.M.J., J.V., A.G.S. and T.E.Y. A.M.J., C.W. and D.A.H. developed the procedures for generating modeling quantities with input from A.S.K. and T.E.Y. A.M.J., D.A.H. and T.E.Y. developed the procedures for tumor forecasting. A.M.J., J.C.D., J.V. and A.G.S. collected the data. A.M.J., A.S.K. and T.E.Y. organized the manuscript. All authors reviewed and edited the manuscript and approved the final draft.

Corresponding author

Correspondence to Thomas E. Yankeelov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Lihua Li and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Weis, J. et al. A. Cancer Res. 74, 4697–707 (2015): https://doi.org/10.1158/0008-5472.CAN-14-2945

Jarrett, A. et al. Neoplasia. 22, 820–830 (2020): https://doi.org/10.1016/j.neo.2020.10.011

Supplementary Information

Supplementary Information

Supplementary Data 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarrett, A.M., Kazerouni, A.S., Wu, C. et al. Quantitative magnetic resonance imaging and tumor forecasting of breast cancer patients in the community setting. Nat Protoc 16, 5309–5338 (2021). https://doi.org/10.1038/s41596-021-00617-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00617-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer