Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Probing the free-state solution behavior of drugs and their tendencies to self-aggregate into nano-entities

Abstract

The free-state solution behaviors of drugs profoundly affect their properties. Therefore, it is critical to properly evaluate a drug’s unique multiphase equilibrium when in an aqueous enviroment, which can comprise lone molecules, self-associating aggregate states and solid phases. To date, the full range of nano-entities that drugs can adopt has been a largely unexplored phenomenon. This protocol describes how to monitor the solution behavior of drugs, revealing the nano-entities formed as a result of self-associations. The procedure begins with a simple NMR 1H assay, and depending on the observations, subsequent NMR dilution, NMR T2-CPMG (spin-spin relaxation Carr-Purcell-Meiboom-Gill) and NMR detergent assays are used to distinguish between the existence of fast-tumbling lone drug molecules, small drug aggregates and slow-tumbling colloids. Three orthogonal techniques (dynamic light scattering, transmission electron microscopy and confocal laser scanning microscopy) are also described that can be used to further characterize any large colloids. The protocol can take a non-specialist between minutes to a few hours; thus, libraries of compounds can be evaluated within days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Drugs exist in unique multi-phase equilibria in solution.
Fig. 2: The presence of large drug colloidal aggregates can be visualized by TEM.
Fig. 3: Overview of the protocol to probe drug solution behavior.
Fig. 4: NMR dilution assay.
Fig. 5: NMR detergent assay.
Fig. 6: Probing the solution behavior of valsartan.
Fig. 7: Probing the solution behavior of methylene blue.
Fig. 8: Probing the solution behavior of candesartan cilexetil.
Fig. 9: Probing the solution behavior of lapatinib.
Fig. 10: Probing the solution behavior of lapatinib by using orthogonal techniques.

Similar content being viewed by others

Data availability

The NMR data that support Figs. 69 and Supplementary Figs. 15 are available in figshare (https://doi.org/10.6084/m9.figshare.15019755.v1).

References

  1. LaPlante, S. R. et al. Monitoring drug self-aggregation and potential for promiscuity in off-target in vitro pharmacology screens by a practical nmr strategy. J. Med. Chem. 56, 7073–7083 (2013).

    Article  CAS  Google Scholar 

  2. Duan, D. et al. Internal structure and preferential protein binding of colloidal aggregates. ACS Chem. Biol. 12, 282–290 (2017).

    Article  CAS  Google Scholar 

  3. Feng, B. Y. & Shoichet, B. K. A detergent-based assay for the detection of promiscuous inhibitors. Nat. Protoc. 1, 550–553 (2006).

    Article  CAS  Google Scholar 

  4. Feng, B. Y. et al. A high-throughput screen for aggregation-based inhibition in a large compound library. J. Med. Chem. 50, 2385–2390 (2007).

    Article  CAS  Google Scholar 

  5. Owen, S. C., Doak, A. K., Wassam, P., Shoichet, M. S. & Shoichet, B. K. Colloidal aggregation affects the efficacy of anticancer drugs in cell culture. ACS Chem. Biol. 7, 1429–1435 (2012).

    Article  CAS  Google Scholar 

  6. Dlim, M. M., Shahout, F. S., Khabir, M. K., Labonté, P. P. & Laplante, S. R. Revealing drug self-associations into nano-entities. ACS Omega 4, 8919–8925 (2019).

    Article  CAS  Google Scholar 

  7. Ayotte, Y. et al. Exposing small-molecule nanoentities by a nuclear magnetic resonance relaxation assay. J. Med. Chem. 62, 7885–7896 (2019).

    Article  CAS  Google Scholar 

  8. LaPlante, S. R. et al. Compound aggregation in drug discovery: implementing a practical NMR assay for medicinal chemists. J. Med. Chem. 56, 5142–5150 (2013).

    Article  CAS  Google Scholar 

  9. Beaulieu, P. L. et al. Multi-parameter optimization of aza-follow-ups to BI 207524, a thumb pocket 1 HCV NS5B polymerase inhibitor. Part 2: impact of lipophilicity on promiscuity and in vivo toxicity. Bioorg. Med. Chem. Lett. 25, 1140–1145 (2015).

    Article  CAS  Google Scholar 

  10. Owen, S. C. et al. Colloidal drug formulations can explain ‘bell-shaped’ concentration-response curves. ACS Chem. Biol. 9, 777–784 (2014).

    Article  CAS  Google Scholar 

  11. Tres, F., Posada, M. M., Hall, S. D., Mohutsky, M. A. & Taylor, L. S. The effect of promiscuous aggregation on in vitro drug metabolism assays. Pharm. Res. 36, 1–9 (2019).

    Article  CAS  Google Scholar 

  12. Ganesh, A. N. et al. Colloidal drug aggregate stability in high serum conditions and pharmacokinetic consequence. ACS Chem. Biol. 14, 751–757 (2019).

    Article  CAS  Google Scholar 

  13. Frenkel, Y. V. et al. Concentration and pH dependent aggregation of hydrophobic drug molecules and relevance to oral bioavailability. J. Med. Chem. 48, 1974–1983 (2005).

    Article  CAS  Google Scholar 

  14. Frenkel, Y. V., Gallicchio, E., Das, K., Levy, R. M. & Arnold, E. Molecular dynamics study of non-nucleoside reverse transcriptase inhibitor 4-[[4-[[4-[(E)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino] benzonitrile (TMC278/rilpivirine) aggregates: correlation between amphiphilic properties of the drug and oral bioavailability. J. Med. Chem. 52, 5896–5905 (2009).

    Article  CAS  Google Scholar 

  15. Ganesh, A. N., Donders, E. N., Shoichet, B. K. & Shoichet, M. S. Collodial aggregation: from screening nuisance to formulation nuance. Nano Today 19, 188–200 (2018).

    Article  CAS  Google Scholar 

  16. Hoo, C. M., Starostin, N., West, P. & Mecartney, M. L. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J. Nanopart. Res. 10, 89–96 (2008).

    Article  CAS  Google Scholar 

  17. Tomaszewska, E. et al. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J. Nanomater. 2013, 313081 (2013).

    Article  Google Scholar 

  18. Akoka, S., Barantin, L. & Trierweiler, M. Concentration measurement by proton NMR using the ERETIC method. Anal. Chem. 71, 2554–2557 (1999).

    Article  CAS  Google Scholar 

  19. Seidler, J., McGovern, S. L., Doman, T. N. & Shoichet, B. K. Identification and prediction of promiscuous aggregating inhibitors among known drugs. J. Med. Chem. 46, 4477–4486 (2003).

    Article  CAS  Google Scholar 

  20. Doak, A. K., Wille, H., Prusiner, S. B. & Shoichet, B. K. Colloid formation by drugs in simulated intestinal fluid. J. Med. Chem. 53, 4259–4265 (2010).

    Article  CAS  Google Scholar 

  21. Hassan, P. A., Rana, S. & Verma, G. Making sense of Brownian motion: colloid characterization by dynamic light scattering. Langmuir 31, 3–12 (2015).

    Article  CAS  Google Scholar 

  22. Ganesh, A. N., McLaughlin, C. K., Duan, D., Shoichet, B. K. & Shoichet, M. S. A new spin on antibody-drug conjugates: trastuzumab-fulvestrant colloidal drug aggregates target HER2-positive cells. ACS Appl. Mater. Interfaces 9, 12195–12202 (2017).

    Article  CAS  Google Scholar 

  23. Wiest, J. et al. Geometrical and structural dynamics of imatinib within biorelevant colloids. Mol. Pharm. 15, 4470–4480 (2018).

    Article  CAS  Google Scholar 

  24. Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 40, 5361–5388 (2011).

    Article  CAS  Google Scholar 

  25. Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Comm. (29), 4332–4353 (2009).

  26. Kestens, V., Bozatzidis, V., De Temmerman, P. J., Ramaye, Y. & Roebben, G. Validation of a particle tracking analysis method for the size determination of nano- and microparticles. J. Nanopart. Res. 19, 271 (2017).

    Article  Google Scholar 

  27. Bevan, C. D. & Lloyd, R. S. A high-throughput screening method for the determination of aqueous drug solubility using laser nephelometry in microtiter plates. Anal. Chem. 72, 1781–1787 (2000).

    Article  CAS  Google Scholar 

  28. Vom, A. et al. Detection and prevention of aggregation-based false positives in STD-NMR-based fragment screening. Aust. J. Chem. 66, 1518–1524 (2013).

    Article  CAS  Google Scholar 

  29. Boulton, S. et al. Mechanisms of specific versus nonspecific interactions of aggregation-prone inhibitors and attenuators. J. Med. Chem. 62, 5063–5079 (2019).

    Article  CAS  Google Scholar 

  30. Yang, Z. Y. et al. Structural analysis and identification of colloidal aggregators in drug discovery. J. Chem. Inf. Model. 59, 3714–3726 (2019).

    Article  CAS  Google Scholar 

  31. Irwin, J. J. et al. An aggregation advisor for ligand discovery. J. Med. Chem. 58, 7076–7087 (2015).

    Article  CAS  Google Scholar 

  32. Meiboom, S. & Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691 (1958).

    Article  CAS  Google Scholar 

  33. Ryan, A. J., Gray, N. M., Lowe, P. N. & Chung, C. W. Effect of detergent on ‘promiscuous’ inhibitors. J. Med. Chem. 46, 3448–3451 (2003).

    Article  CAS  Google Scholar 

  34. Feng, B. Y., Shelat, A., Doman, T. N., Guy, R. K. & Shoichet, B. K. High-throughput assays for promiscuous inhibitors. Nat. Chem. Biol. 1, 146–148 (2005).

    Article  CAS  Google Scholar 

  35. Pellecchia, M., Sem, D. S. & Wüthrich, K. NMR in drug discovery. Nat. Rev. Drug Discov. 1, 211–219 (2002).

    Article  CAS  Google Scholar 

  36. Hwang, J. & T., L. S. Water suppression that works. J. Magn. Reson. A 112, 275–279 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following agencies for helping fund this research: NSERC (Natural Sciences and Engineering Research Council of Canada), CQDM (Quebec Consortium for Drug Discovery), CFI (Canada Foundation for Innovation), Mitacs, INRS (Institut national de la recherche scientifique), Institut Pasteur, la région Auvergne-Rhône-Alpes, le ministère de l’enseignement supérieur et de la recherche (France) and NMX Research and Solutions Inc. We also thank our colleagues for their help, suggestions and encouragement: P. Bouchard, N. Girard, D. Bendahan, D. Girard, J. Tremblay and A. Nakamura.

Author information

Authors and Affiliations

Authors

Contributions

S.R.L.P. conceived the concepts described in this report. S.R.L.P. and V.R. wrote the paper. V.R., F.S., G.L.P., M.M.D., S.R.L.P., S.T.L., Y.A. and S.W. performed the experiments or helped with interpretations. Y.A. and S.T.L. implemented some of the experiments used herein.

Corresponding author

Correspondence to Steven R. LaPlante.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Ulrike Holzgrabe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 NMR 1H assay.

a, Preparation for assay in DMSO-d6. b, Preparation for assay in buffer. Shown are volumes suggested for 3-mm NMR tubes, and volumes for 5-mm tubes are in parentheses.

Extended Data Fig. 2 NMR T2-CPMG assay.

a, Preparation of the sample. b, Interpretation of the results.

Extended Data Fig. 3 Solvent solubility assay.

Preparation of the sample and interpretations.

Extended Data Fig. 4 Orthogonal assays.

ac, Preparation of the samples for DLS (a), TEM (b) and CLSM (c).

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 with discussions and Supplementary Tables 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LaPlante, S.R., Roux, V., Shahout, F. et al. Probing the free-state solution behavior of drugs and their tendencies to self-aggregate into nano-entities. Nat Protoc 16, 5250–5273 (2021). https://doi.org/10.1038/s41596-021-00612-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00612-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research