Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Dual detection of chromatin accessibility and DNA methylation using ATAC-Me

Abstract

The epigenome is multidimensional, with individual molecular components operating on different levels to control transcriptional output. Techniques that combine measurements of these features can reveal their precise correspondence in genomic space, or temporal connectivity, to better understand how they jointly regulate genes. ATAC-Me is an integrated method to probe DNA methylation and chromatin accessibility from a single DNA fragment library. Intact nuclei undergo Tn5 transposition to isolate DNA fragments within nucleosome-free regions. Isolated fragments are exposed to sodium bisulfite before library amplification and sequencing. A typical ATAC-Me experiment detects ~60,000–75,000 peak regions (P < 0.05), covering ~3–4 million CpG sites with at least 5× coverage. These sites display a range of methylation values depending on the cellular and genomic context. The approach is well suited for time course studies that aim to capture chromatin and DNA methylation dynamics in tandem during cellular differentiation. The protocol is completed in 2 d with standard molecular biology equipment and expertise. Analysis of resulting data uses publicly available software requiring basic bioinformatics skills to interpret results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General workflow for the ATAC-Me protocol.
Fig. 2: Fragment distribution at quality check steps.
Fig. 3: Assessing library complexity versus data quality.
Fig. 4: Data analysis pipeline and peak caller characteristics.
Fig. 5: Anticipated results and ATAC-Me data visualization.

Similar content being viewed by others

Data availability

Data used in this protocol have been deposited in the Gene Expression Omnibus database with accession number GSE166267. Figure 5 is derived from the raw data.

Code availability

Bioinformatic pipelines described in this protocol have been made available in GitHub (https://github.com/HodgesGenomicsLab/NatProtocols_ATACme)51.

References

  1. Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boyle, A. P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311–322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Taberlay, P. C. et al. Polycomb-repressed genes have permissive enhancers that initiate reprogramming. Cell 147, 1283–1294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Atlasi, Y. & Stunnenberg, H. G. The interplay of epigenetic marks during stem cell differentiation and development. Nat. Rev. Genet. 18, 643–658 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Kelsey, G., Stegle, O. & Reik, W. Single-cell epigenomics: recording the past and predicting the future. Science 358, 69–75 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hodges, E. et al. Directional DNA methylation changes and complex intermediate states accompany lineage specificity in the adult hematopoietic compartment. Mol. Cell 44, 17–28 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Xie, W. et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153, 1134–1148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schubeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Brinkman, A. B. et al. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22, 1128–1138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. King, A. D. et al. Reversible regulation of promoter and enhancer histone landscape by DNA methylation in mouse embryonic stem cells. Cell Rep. 17, 289–302 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Charlet, J. et al. Bivalent regions of cytosine methylation and H3K27 acetylation suggest an active role for DNA methylation at enhancers. Mol. Cell 62, 422–431 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schlesinger, F., Smith, A. D., Gingeras, T. R., Hannon, G. J. & Hodges, E. De novo DNA demethylation and noncoding transcription define active intergenic regulatory elements. Genome Res. 23, 1601–1614 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmidl, C. et al. Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity. Genome Res. 19, 1165–1174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barnett, K. R. et al. ATAC-Me captures prolonged DNA methylation of dynamic chromatin accessibility loci during cell fate transitions. Mol. Cell 77, 1350–1364 e1356 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kriaucionis, S. & Klose, R. J. ATACing DNA methylation during differentiation. Mol. Cell 77, 1159–1161 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adey, A. & Shendure, J. Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res. 22, 1139–1143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, Q. et al. Tagmentation-based whole-genome bisulfite sequencing. Nat. Protoc. 8, 2022–2032 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kelly, T. K. et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res. 22, 2497–2506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fujiwara, S., Baek, S., Varticovski, L., Kim, S. & Hager, G. L. High quality ATAC-Seq data recovered from cryopreserved breast cell lines and tissue. Sci. Rep. 9, 516 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Scharer, C. D. et al. ATAC-seq on biobanked specimens defines a unique chromatin accessibility structure in naïve SLE B cells. Sci. Rep. 6, 27030 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lara-Astiaso, D. et al. Chromatin state dynamics during blood formation. Science 345, 943 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rhie, S. K., Schreiner, S. & Farnham, P. J. Defining regulatory elements in the human genome using nucleosome occupancy and methylome sequencing (NOMe-Seq). Methods Mol. Biol. 1766, 209–229 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barnett, K. R. et al. ATAC-Me captures prolonged DNA methylation of dynamic chromatin accessibility loci during cell fate transitions. Mol. Cell https://doi.org/10.1016/j.molcel.2020.01.004 (2020).

  36. Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Trevino, A. E. et al. Chromatin accessibility dynamics in a model of human forebrain development. Science 367, eaay1645 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bysani, M. et al. ATAC-seq reveals alterations in open chromatin in pancreatic islets from subjects with type 2 diabetes. Sci. Rep. 9, 7785 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Tierling, S., Schmitt, B. & Walter, J. Comprehensive evaluation of commercial bisulfite-based DNA methylation kits and development of an alternative protocol with improved conversion performance. Genet. Epigenet. 10, 1179237x18766097 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Montefiori, L. et al. Reducing mitochondrial reads in ATAC-seq using CRISPR/Cas9. Sci. Rep. 7, 2451 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Schutsky, E. K. et al. Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase. Nat. Biotechnol. 36, 1083–1090 (2018).

    Article  CAS  Google Scholar 

  42. Yu, M. et al. Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat. Protoc. 7, 2159–2170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Song, C.-X. et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29, 68–72 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Picelli, S. et al. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 24, 2033–2040 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krueger, F. Trim galore: a wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. Bioinformatics 516, 517 (2015).

    Google Scholar 

  47. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17, 10–12 (2011).

    Article  Google Scholar 

  48. Chen, H., Smith, A. D. & Chen, T. WALT: fast and accurate read mapping for bisulfite sequencing. Bioinformatics 32, 3507–3509 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Song, Q. et al. A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PloS One 8, e81148–e81148 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137–R137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Guerin, L., Barnett, K. R. & Hodges, E. Dual detection of chromatin accessibility and DNA methylation using ATAC-Me. HodgesGenomicsLab/NatProtocols_ATACme, https://doi.org/10.5281/zenodo.5062153 (2021).

  52. Wu, M. & Gu, L. TCseq: time course sequencing data analysis. R package version 1.12.1 (2020).

  53. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yan, F., Powell, D. R., Curtis, D. J. & Wong, N. C. From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis. Genome Biol. 21, 22 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li, Z. et al. Identification of transcription factor binding sites using ATAC-seq. Genome Biol. 20, 45 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bentsen, M. et al. ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation. Nat. Commun. 11, 4267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Daley, T. & Smith, A. D. Predicting the molecular complexity of sequencing libraries. Nat. Methods 10, 325–327 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank VANTAGE for their advice in sequencing the libraries. We thank members of the Hodges lab for helpful discussions. We thank the Kariolich and Gama labs for cell lines. This work was supported by National Institutes of Health (K22 CA184308 to E.H., T32HD007502 to K.B).

Author information

Authors and Affiliations

Authors

Contributions

E.H. directed the project. L.G. and K.B. performed the experiments. L.G. and E.H wrote the manuscript.

Corresponding author

Correspondence to Emily Hodges.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Suhn Kyong Rhie and Jörn Walter for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Barnett, K. et al. Mol. Cell 77, 1350–1364 e1356 (2020): https://doi.org/10.1016/j.molcel.2020.01.004 (2020)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerin, L.N., Barnett, K.R. & Hodges, E. Dual detection of chromatin accessibility and DNA methylation using ATAC-Me. Nat Protoc 16, 5377–5397 (2021). https://doi.org/10.1038/s41596-021-00608-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00608-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing