Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tutorial: using nanoneedles for intracellular delivery

Abstract

Intracellular delivery of advanced therapeutics, including biologicals and supramolecular agents, is complex because of the natural biological barriers that have evolved to protect the cell. Efficient delivery of therapeutic nucleic acids, proteins, peptides and nanoparticles is crucial for clinical adoption of emerging technologies that can benefit disease treatment through gene and cell therapy. Nanoneedles are arrays of vertical high-aspect-ratio nanostructures that can precisely manipulate complex processes at the cell interface, enabling effective intracellular delivery. This emerging technology has already enabled the development of efficient and non-destructive routes for direct access to intracellular environments and delivery of cell-impermeant payloads. However, successful implementation of this technology requires knowledge of several scientific fields, making it complex to access and adopt by researchers who are not directly involved in developing nanoneedle platforms. This presents an obstacle to the widespread adoption of nanoneedle technologies for drug delivery. This tutorial aims to equip researchers with the knowledge required to develop a nanoinjection workflow. It discusses the selection of nanoneedle devices, approaches for cargo loading and strategies for interfacing to biological systems and summarises an array of bioassays that can be used to evaluate the efficacy of intracellular delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The five key factors determining a nanoinjection workflow.
Fig. 2: Scanning electron microscopy images of nanoneedle devices and their interfacial interactions with adherent cells.
Fig. 3: Key steps for six common nanoneedle fabrication methods and representative scanning electron microscopy (SEM) images.
Fig. 4: Modalities of nanoneedle interfacing.
Fig. 5: Evaluating nanoinjection.
Fig. 6: Characterization of nanoinjection by electron microscopy.

Similar content being viewed by others

Data availability

This paper does not include previously unpublished results. Thus, no data in raw format are made available.

References

  1. Stewart, M. P., Langer, R. & Jensen, K. F. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem. Rev. 118, 7409–7531 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brooks, J. et al. High throughput and highly controllable methods for in vitro intracellular delivery. Small 16, e2004917 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Elnathan, R., Kwiat, M., Patolsky, F. & Voelcker, N. H. Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today 9, 172–196 (2014).

    Article  CAS  Google Scholar 

  4. Tay, A. The benefits of going small: nanostructures for mammalian cell transfection. ACS Nano 14, 7714–7721 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. He, G. et al. Nanoneedle platforms: the many ways to pierce the cell membrane. Adv. Funct. Mater. 30, 1909890 (2020).

    Article  CAS  Google Scholar 

  6. Tay, A. & Melosh, N. Transfection with nanostructure electro-injection is minimally perturbative. Adv. Ther. 52, 1900133 (2019).

    Article  CAS  Google Scholar 

  7. Higgins, S. G. et al. High-aspect-ratio nanostructured surfaces as biological metamaterials. Adv. Mater. 32, e1903862 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Hanson, L., Lin, Z. C., Xie, C., Cui, Y. & Cui, B. Characterization of the cell–nanopillar interface by transmission electron microscopy. Nano Lett. 12, 5815–5820 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, R. et al. High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett. 17, 2757–2764 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abbott, J., Ye, T., Ham, D. & Park, H. Optimizing nanoelectrode arrays for scalable intracellular electrophysiology. Acc. Chem. Res. 51, 600–608 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, Y. et al. Emerging roles of 1D vertical nanostructures in orchestrating immune cell functions. Adv. Mater. 32, e2001668 (2020).

    Article  PubMed  CAS  Google Scholar 

  12. Cao, Y. et al. Universal intracellular biomolecule delivery with precise dosage control. Sci. Adv. 4, eaat8131 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, Y. et al. Silicon-nanotube-mediated intracellular delivery enables ex vivo gene editing. Adv. Mater. 32, e2000036 (2020).

    Article  PubMed  CAS  Google Scholar 

  14. Shalek, A. K. et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl Acad. Sci. USA 107, 1870–1875 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, Y. et al. Poking cells for efficient vector-free intracellular delivery. Nat. Commun. 5, 4466 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, Z. et al. Interrogation of cellular innate immunity by diamond-nanoneedle-assisted intracellular molecular fishing. Nano Lett. 15, 7058–7063 (2015).

    Article  PubMed  CAS  Google Scholar 

  17. Chiappini, C. et al. Mapping local cytosolic enzymatic activity in human esophageal mucosa with porous silicon nanoneedles. Adv. Mater. 27, 5147–5152 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, Y. et al. Cellular deformations induced by conical silicon nanowire arrays facilitate gene delivery. Small 15, e1904819 (2019).

    Article  PubMed  CAS  Google Scholar 

  19. Schmiderer, L. et al. Efficient and nontoxic biomolecule delivery to primary human hematopoietic stem cells using nanostraws. Proc. Natl Acad. Sci. USA 117, 21267–21273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tian, B. et al. Roadmap on semiconductor–cell biointerfaces. Phys. Biol. 15, 031002 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Berthing, T. et al. Cell membrane conformation at vertical nanowire array interface revealed by fluorescence imaging. Nanotechnology 23, 415102 (2012).

    Article  PubMed  CAS  Google Scholar 

  22. Persson, H. et al. Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. Small 9, 4006–4016 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buch-Manson, N. et al. Mapping cell behavior across a wide range of vertical silicon nanocolumn densities. Nanoscale 9, 5517–5527 (2017).

    Article  PubMed  Google Scholar 

  24. Zhao, W. et al. Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. Nat. Nanotechnol. 12, 750–756 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, J., Kim, S., Ahn, J., Lee, J. & Nam, J.-M. A lipid-nanopillar-array-based immunosorbent assay. Adv. Mater. 32, e2001360 (2020).

    Article  PubMed  CAS  Google Scholar 

  26. Chiappini, C. et al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 14, 532–539 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim, H. et al. Bioresorbable, miniaturized porous silicon needles on a flexible water-soluble backing for unobtrusive, sustained delivery of chemotherapy. ACS Nano 14, 7227–7236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peer, E., Artzy-Schnirman, A., Gepstein, L. & Sivan, U. Hollow nanoneedle array and its utilization for repeated administration of biomolecules to the same cells. ACS Nano 6, 4940–4946 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. VanDersarl, J. J., Xu, A. M. & Melosh, N. A. Nanostraws for direct fluidic intracellular access. Nano Lett. 12, 3881–3886 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Xie, X. et al. Nanostraw–electroporation system for highly efficient intracellular delivery and transfection. ACS Nano 7, 4351–4358 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Lin, Z. C., Xie, C., Osakada, Y., Cui, Y. & Cui, B. Iridium oxide nanotube electrodes for highly sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 5, 3206 (2014).

    Article  PubMed  CAS  Google Scholar 

  32. Robinson, J. T. et al. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xie, C., Lin, Z., Hanson, L., Cui, Y. & Cui, B. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wen, R. et al. Intracellular delivery and sensing system based on electroplated conductive nanostraw arrays. ACS Appl. Mater. Interfaces 11, 43936–43948 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Piret, G., Perez, M.-T. & Prinz, C. N. Neurite outgrowth and synaptophysin expression of postnatal CNS neurons on GaP nanowire arrays in long-term retinal cell culture. Biomaterials 34, 875–887 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Persson, H., Li, Z., Tegenfeldt, J. O., Oredsson, S. & Prinz, C. N. From immobilized cells to motile cells on a bed-of-nails: effects of vertical nanowire array density on cell behaviour. Sci. Rep. 5, 18535 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ozel, T. et al. Electrochemical deposition of conformal and functional layers on high aspect ratio silicon micro/nanowires. Nano Lett. 17, 4502–4507 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. La Rocca, R., Messina, G. C., Dipalo, M., Shalabaeva, V. & De Angelis, F. Out-of-plane plasmonic antennas for raman analysis in living cells. Small 11, 4632–4637 (2015).

    Article  PubMed  CAS  Google Scholar 

  39. Elnathan, R. et al. Maximizing transfection efficiency of vertically aligned silicon nanowire arrays. Adv. Funct. Mater. 25, 7215–7225 (2015).

    Article  CAS  Google Scholar 

  40. Buch-Månson, N. et al. Towards a better prediction of cell settling on nanostructure arrays—simple means to complicated ends. Adv. Funct. Mater. 25, 3246–3255 (2015).

    Article  CAS  Google Scholar 

  41. Wang, S., Shan, Z. & Huang, H. The mechanical properties of nanowires. Adv. Sci. 4, 1600332 (2017).

    Article  CAS  Google Scholar 

  42. Santoro, F. et al. Revealing the cell–material interface with nanometer resolution by focused ion beam/scanning electron microscopy. ACS Nano 11, 8320–8328 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, X. et al. A nanostructure platform for live-cell manipulation of membrane curvature. Nat. Protoc. 14, 1772–1802 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Han, S., Nakamura, C., Obataya, I., Nakamura, N. & Miyake, J. Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness. Biochem. Biophys. Res. Commun. 332, 633–639 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Canham, L. Handbook of Porous Silicon (Springer, 2014).

  46. Alhmoud, H., Brodoceanu, D., Elnathan, R., Kraus, T. & Voelcker, N. H. A MACEing silicon: towards single-step etching of defined porous nanostructures for biomedicine. Prog. Mater. Sci. 116, 100636 (2021).

    Article  CAS  Google Scholar 

  47. Hansel, C. S. et al. Nanoneedle-mediated stimulation of cell mechanotransduction machinery. ACS Nano 13, 2913–2926 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cunin, F. et al. Biomolecular screening with encoded porous-silicon photonic crystals. Nat. Mater. 1, 39–41 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Chiappini, C. et al. Tailored porous silicon microparticles: fabrication and properties. Chemphyschem 11, 1029–1035 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Salonen, J. & Mäkilä, E. Thermally carbonized porous silicon and its recent applications. Adv. Mater. 30, e1703819 (2018).

    Article  PubMed  CAS  Google Scholar 

  51. Chiappini, C., Liu, X., Fakhoury, J. R. & Ferrari, M. Biodegradable porous silicon barcode nanowires with defined geometry. Adv. Funct. Mater. 20, 2231–2239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Elnathan, R. et al. Versatile particle-based route to engineer vertically aligned silicon nanowire arrays and nanoscale pores. ACS Appl. Mater. Interfaces 7, 23717–23724 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Rey, B. M. et al. Fully tunable silicon nanowire arrays fabricated by soft nanoparticle templating. Nano Lett. 16, 157–163 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. He, G. et al. Multifunctional branched nanostraw-electroporation platform for intracellular regulation and monitoring of circulating tumor cells. Nano Lett. 19, 7201–7209 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. He, G. et al. Hierarchical spiky microstraws-integrated microfluidic device for efficient capture and in situ manipulation of cancer cells. Adv. Funct. Mater. 29, 1806484 (2019).

    Article  CAS  Google Scholar 

  56. Dipalo, M. et al. Cells adhering to 3D vertical nanostructures: cell membrane reshaping without stable internalization. Nano Lett. 18, 6100–6105 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Dipalo, M. et al. Membrane poration mechanisms at the cell–nanostructure interface. Adv. Biosyst. 3, e1900148 (2019).

    Article  PubMed  Google Scholar 

  58. Liu, J., Fraire, J. C., De Smedt, S. C., Xiong, R. & Braeckmans, K. Intracellular labeling with extrinsic probes: delivery strategies and applications. Small 16, e2000146 (2020).

    Article  PubMed  CAS  Google Scholar 

  59. Abbott, J. et al. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12, 460–466 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Na, Y.-R. et al. Probing enzymatic activity inside living cells using a nanowire–cell “sandwich” assay. Nano Lett. 13, 153–158 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Yurugi, H. et al. A subset of flavaglines inhibits KRAS nanoclustering and activation. J. Cell Sci. 133, jcs244111 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Lou, H.-Y. et al. Membrane curvature underlies actin reorganization in response to nanoscale surface topography. Proc. Natl Acad. Sci. USA 116, 23143–23151 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liang, H. et al. Membrane curvature sensing of the lipid-anchored K-Ras small GTPase. Life Sci. Alliance 2, e201900343 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nagy, N. et al. Hyaluronan content governs tissue stiffness in pancreatic islet inflammation. J. Biol. Chem. 293, 567–578 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Hanson, L. et al. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. Nat. Nanotechnol. 10, 554–562 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Duan, X. & Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000).

    Article  CAS  Google Scholar 

  67. Schmidt, V., Wittemann, J. V., Senz, S. & Gösele, U. Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv. Mater. 21, 2681–2702 (2009).

    Article  CAS  Google Scholar 

  68. Dabkowska, A. P. et al. Fluid and highly curved model membranes on vertical nanowire arrays. Nano Lett. 14, 4286–4292 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Wu, Y. et al. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4, 433–436 (2004).

    Article  CAS  Google Scholar 

  70. Wang, F. et al. Solution−liquid−solid growth of semiconductor nanowires. Inorg. Chem. 45, 7511–7521 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Hochbaum, A. I., Fan, R., He, R. & Yang, P. Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5, 457–460 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Fu, Y. Q. et al. Deep reactive ion etching as a tool for nanostructure fabrication. J. Vac. Sci. Technol. B Microelectron. Nanometer. Struct. Process Meas. Phenom. 27, 1520–1526 (2009).

    Article  CAS  Google Scholar 

  73. Yang, N., Uetsuka, H., Osawa, E. & Nebel, C. E. Vertically aligned nanowires from boron-doped diamond. Nano Lett. 8, 3572–3576 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Cheung, C. L., Nikolić, R. J., Reinhardt, C. E. & Wang, T. F. Fabrication of nanopillars by nanosphere lithography. Nanotechnology 17, 1339–1343 (2006).

    Article  CAS  Google Scholar 

  75. Hsu, C.-M., Connor, S. T., Tang, M. X. & Cui, Y. Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching. Appl. Phys. Lett. 93, 133109 (2008).

    Article  CAS  Google Scholar 

  76. Lin, H. et al. Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping. J. Mater. Chem. A 1, 9942–9946 (2013).

    Article  CAS  Google Scholar 

  77. Brodoceanu, D. et al. Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching. Nanotechnology 27, 075301 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Harding, F. J. et al. Ordered silicon pillar arrays prepared by electrochemical micromachining: substrates for high-efficiency cell transfection. ACS Appl. Mater. Interfaces 8, 29197–29202 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Huang, Z., Geyer, N., Werner, P., de Boor, J. & Gösele, U. Metal-assisted chemical etching of silicon: a review. Adv. Mater. 23, 285–308 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Lévy-Clément, C. Porous silicon formation by metal nanoparticle-assisted etching. in Handbook of Porous Silicon. (ed. Canham, L.) 61–78 (Springer, 2018).

  81. Chiappini, C. MACE silicon nanostructures. in Handbook of Porous Silicon. (ed. Canham, L.) 247–267 (Springer, 2018).

  82. Alhmoud, H. et al. Antibacterial properties of silver dendrite decorated silicon nanowires. RSC Adv. 6, 65976–65987 (2016).

    Article  CAS  Google Scholar 

  83. Fernández-Rodríguez, M. Á. et al. Tunable 2D binary colloidal alloys for soft nanotemplating. Nanoscale 10, 22189–22195 (2018).

    Article  PubMed  Google Scholar 

  84. Li, L. et al. Controlling the geometries of Si nanowires through tunable nanosphere lithography. ACS Appl. Mater. Interfaces 9, 7368–7375 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Scheidegger, L. et al. Compression and deposition of microgel monolayers from fluid interfaces: particle size effects on interface microstructure and nanolithography. Phys. Chem. Chem. Phys. 19, 8671–8680 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. He, G. et al. Hollow nanoneedle-electroporation system to extract intracellular protein repetitively and nondestructively. ACS Sens. 3, 1675–1682 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Feng, J. et al. Antibody-free isolation and regulation of adherent cancer cells via hybrid branched microtube-sandwiched hydrodynamic system. Nanoscale 12, 5103–5113 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Elnathan, R., Kantaev, R. & Patolsky, F. Synthesis of hybrid multicomponent disklike nanoparticles. Nano Lett. 8, 3964–3972 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Zhang, Q. B., Xu, D., Hung, T. F. & Zhang, K. Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates. Nanotechnology 24, 065602 (2013).

    Article  PubMed  Google Scholar 

  90. Kim, H. et al. Flexible elastomer patch with vertical silicon nanoneedles for intracellular and intratissue nanoinjection of biomolecules. Sci. Adv. 4, eaau6972 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Elnathan, R. et al. Optically transparent vertical silicon nanowire arrays for live-cell imaging. J. Nanobiotechnology 19, 51 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tullii, G. et al. High-aspect-ratio semiconducting polymer pillars for 3D cell cultures. ACS Appl. Mater. Interfaces 11, 28125–28137 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, Y., Lo, C.-W., Taylor, J. A. & Yang, S. Replica molding of high-aspect-ratio polymeric nanopillar arrays with high fidelity. Langmuir 22, 8595–8601 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Xu, X. et al. Multiple-patterning nanosphere lithography for fabricating periodic three-dimensional hierarchical nanostructures. ACS Nano 11, 10384–10391 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Chiappini, C. Nanoneedle-based sensing in biological systems. ACS Sens. 2, 1086–1102 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Huang, J.-A. et al. On-demand intracellular delivery of single particles in single cells by 3D hollow nanoelectrodes. Nano Lett. 19, 722–731 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shokouhi, A.-R., Aslanoglou, S., Nisbet, D., Voelcker, N. H. & Elnathan, R. Vertically configured nanostructure-mediated electroporation: a promising route for intracellular regulations and interrogations. Mater. Horiz. 7, 2810–2831 (2020).

    Article  CAS  Google Scholar 

  98. Vutti, S. et al. Click chemistry mediated functionalization of vertical nanowires for biological applications. Chemistry 22, 496–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Mendes, P. M. Cellular nanotechnology: making biological interfaces smarter. Chem. Soc. Rev. 42, 9207–9218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Qu, Y. et al. A universal platform for high-efficiency “engineering” living cells: integration of cell capture, intracellular delivery of biomolecules, and cell harvesting functions. Adv. Funct. Mater. 30, 1906362 (2020).

    Article  CAS  Google Scholar 

  101. Lee, K., Lingampalli, N., Pisano, A. P., Murthy, N. & So, H. Physical delivery of macromolecules using high-aspect ratio nanostructured materials. ACS Appl. Mater. Interfaces 7, 23387–23397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kwak, M., Han, L., Chen, J. J. & Fan, R. Interfacing inorganic nanowire arrays and living cells for cellular function analysis. Small 11, 5600–5610 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Higgins, S. G. & Stevens, M. M. Extracting the contents of living cells. Science 356, 379–380 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Tay, A. & Melosh, N. Nanostructured materials for intracellular cargo delivery. Acc. Chem. Res. 52, 2462–2471 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Fajrial, A. K. & Ding, X. Advanced nanostructures for cell membrane poration. Nanotechnology 30, 264002 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. McGuire, A. F., Santoro, F. & Cui, B. Interfacing cells with vertical nanoscale devices: applications and characterization. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 11, 101–126 (2018).

    Article  Google Scholar 

  107. Seong, H. et al. Size-tunable nanoneedle arrays for influencing stem cell morphology, gene expression, and nuclear membrane curvature. ACS Nano 14, 5371–5381 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gopal, S. et al. Porous silicon nanoneedles modulate endocytosis to deliver biological payloads. Adv. Mater. 31, e1806788 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  109. Yamagishi, A. et al. Direct delivery of Cas9-sgRNA ribonucleoproteins into cells using a nanoneedle array. Appl. Sci. 9, 965 (2019).

    Article  CAS  Google Scholar 

  110. Qu, Y., Zhang, Y., Yu, Q. & Chen, H. Surface-mediated intracellular delivery by physical membrane disruption. ACS Appl. Mater. Interfaces 12, 31054–31078 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Dixit, H. G. et al. Massively-parallelized, deterministic mechanoporation for intracellular delivery. Nano Lett. 20, 860–867 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Zhang, B., Shi, Y., Miyamoto, D., Nakazawa, K. & Miyake, T. Nanostraw membrane stamping for direct delivery of molecules into adhesive cells. Sci. Rep. 9, 6806 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Matsumoto, D. et al. Oscillating high-aspect-ratio monolithic silicon nanoneedle array enables efficient delivery of functional bio-macromolecules into living cells. Sci. Rep. 5, 15325 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yum, K., Yu, M.-F., Wang, N. & Xiang, Y. K. Biofunctionalized nanoneedles for the direct and site-selective delivery of probes into living cells. Biochim. Biophys. Acta 1810, 330–338 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Anglin, E. J., Cheng, L., Freeman, W. R. & Sailor, M. J. Porous silicon in drug delivery devices and materials. Adv. Drug Deliv. Rev. 60, 1266–1277 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tieu, T., Alba, M., Elnathan, R., Cifuentes-Rius, A. & Voelcker, N. H. Advances in porous silicon–based nanomaterials for diagnostic and therapeutic applications. Adv. Ther. 2, 1800095 (2019).

    Article  Google Scholar 

  117. Xu, A. M., Kim, S. A., Wang, D. S., Aalipour, A. & Melosh, N. A. Temporally resolved direct delivery of second messengers into cells using nanostraws. Lab Chip 16, 2434–2439 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Amin, H., Dipalo, M., De Angelis, F. & Berdondini, L. Biofunctionalized 3D nanopillar arrays fostering cell guidance and promoting synapse stability and neuronal activity in networks. ACS Appl. Mater. Interface 10, 15207–15215 (2018).

    Article  CAS  Google Scholar 

  119. Kwiat, M. et al. Non-covalent monolayer-piercing anchoring of lipophilic nucleic acids: preparation, characterization, and sensing applications. J. Am. Chem. Soc. 134, 280–292 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Le Saux, G. et al. Nanoscale mechanosensing of natural killer cells is revealed by antigen-functionalized nanowires. Adv. Mater. 31, e1805954 (2019).

    Article  PubMed  CAS  Google Scholar 

  121. Nair, B. G. et al. High density of aligned nanowire treated with polydopamine for efficient gene silencing by siRNA according to cell membrane perturbation. ACS Appl. Mater. Interfaces 8, 18693–18700 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Choi, M. et al. Intracellular delivery of bioactive cargos to hard-to-transfect cells using carbon nanosyringe arrays under an applied centrifugal g-force. Adv. Healthc. Mater. 5, 101–107 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Kim, W., Ng, J. K., Kunitake, M. E., Conklin, B. R. & Yang, P. Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 129, 7228–7229 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Chan, M. S. & Lo, P. K. Nanoneedle-assisted delivery of site-selective peptide-functionalized DNA nanocages for targeting mitochondria and nuclei. Small 10, 1255–1260 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Sahoo, P. K. et al. Nanowire arrays as cell force sensors to investigate adhesin-enhanced holdfast of single cell bacteria and biofilm stability. Nano Lett. 16, 4656–4664 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Boukherroub, R., Petit, A., Loupy, A., Chazalviel, J.-N. & Ozanam, F. Microwave-assisted chemical functionalization of hydrogen-terminated porous silicon surfaces. J. Phys. Chem. B 107, 13459–13462 (2003).

    Article  CAS  Google Scholar 

  127. Buriak, J. M. et al. Lewis acid mediated hydrosilylation on porous silicon surfaces. J. Am. Chem. Soc. 121, 11491–11502 (1999).

    Article  CAS  Google Scholar 

  128. Flavel, B. S., Sweetman, M. J., Shearer, C. J., Shapter, J. G. & Voelcker, N. H. Micropatterned arrays of porous silicon: toward sensory biointerfaces. ACS Appl. Mater. Interfaces 3, 2463–2471 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Streifer, J. A., Kim, H., Nichols, B. M. & Hamers, R. J. Covalent functionalization and biomolecular recognition properties of DNA-modified silicon nanowires. Nanotechnology 16, 1868–1873 (2005).

    Article  CAS  Google Scholar 

  130. Leriche, G., Chisholm, L. & Wagner, A. Cleavable linkers in chemical biology. Bioorg. Med. Chem. 20, 571–582 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Zhao, Y. et al. Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat. Nanotechnol. 14, 783–790 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Tian, B. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Duan, X. et al. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  134. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Shalek, A. K. et al. Nanowire-mediated delivery enables functional interrogation of primary immune cells: application to the analysis of chronic lymphocytic leukemia. Nano Lett. 12, 6498–6504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chiappini, C. et al. Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: exploring the biointerface. ACS Nano 9, 5500–5509 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lestrell, E., Patolsky, F., Voelcker, N. H. & Elnathan, R. Engineered nano-bio interfaces for intracellular delivery and sampling: applications, agency and artefacts. Mater. Today 33, 87–104 (2020).

    Article  CAS  Google Scholar 

  138. Cao, Y. et al. Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules. Proc. Natl Acad. Sci. USA 116, 7899–7904 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kumar, A. R. K., Shou, Y., Chan, B., L, K. & Tay, A. Materials for improving immune cell transfection. Adv. Mater. 33, e2007421 (2021).

    Article  PubMed  CAS  Google Scholar 

  140. Xie, X., Aalipour, A., Gupta, S. V. & Melosh, N. A. Determining the time window for dynamic nanowire cell penetration processes. ACS Nano 9, 11667–11677 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Saklayen, N. et al. Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates. ACS Nano 11, 3671–3680 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Man, T. et al. Intracellular photothermal delivery for suspension cells using sharp nanoscale tips in microwells. ACS Nano 13, 10835–10844 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Liu, Z. et al. Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator. Adv. Mater. 31, e1807795 (2019).

    Article  PubMed  CAS  Google Scholar 

  144. Chevrier, N. et al. Systematic discovery of TLR signaling components delineates viral-sensing circuits. Cell 147, 853–867 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Yosef, N. et al. Dynamic regulatory network controlling Th17 cell differentiation. Nature 496, 461–468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tan, J. T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl Acad. Sci. USA 98, 8732–8737 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu, K. & Rosenberg, S. A. Interleukin-2-independent proliferation of human melanoma-reactive T lymphocytes transduced with an exogenous IL-2 gene is stimulation dependent. J. Immunother. 26, 190–201 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Topp, M. S. et al. Restoration of CD28 expression in CD28 CD8+ memory effector T cells reconstitutes antigen-induced IL-2 production. J. Exp. Med. 198, 947–955 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Metavarayuth, K., Sitasuwan, P., Zhao, X., Lin, Y. & Wang, Q. Influence of surface topographical cues on the differentiation of mesenchymal stem cells in vitro. ACS Biomater. Sci. Eng. 2, 142–151 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Xu, C. et al. Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23, 315–323 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Harberts, J. et al. Interfacing human induced pluripotent stem cell-derived neurons with designed nanowire arrays as a future platform for medical applications. Biomater. Sci. 8, 2434–2446 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Gerstel, M. S. & Place, V. A. National Center for Biotechnology Information. PubChem Patent Summary: Drug Delivery Device. US-3964482-A (1976); https://pubchem.ncbi.nlm.nih.gov/patent/US-3964482-A

  154. Dervisevic, M., Alba, M., Prieto-Simon, B. & Voelcker, N. H. Skin in the diagnostics game: wearable biosensor nano- and microsystems for medical diagnostics. Nano Today 30, 100828 (2020).

    Article  CAS  Google Scholar 

  155. Quinn, H. L., Kearney, M. C., Courtenay, A. J., McCrudden, M. T. & Donnelly, R. F. The role of microneedles for drug and vaccine delivery. Expert Opin. Drug Deliv. 11, 1769–1780 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Depelsenaire, A. C. I. et al. Colocalization of cell death with antigen deposition in skin enhances vaccine immunogenicity. J. Invest. Dermatol. 134, 2361–2370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gill, H. S., Söderholm, J., Prausnitz, M. R. & Sällberg, M. Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. Gene Ther. 17, 811–814 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Li, W. et al. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat. Biomed. Eng. 3, 220–229 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Bonde, S. et al. Tuning InAs nanowire density for HEK293 cell viability, adhesion, and morphology: perspectives for nanowire-based biosensors. ACS Appl. Mater. Interfaces 5, 10510–10519 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Beckwith, K. S., Ullmann, S., Vinje, J. & Sikorski, P. Influence of nanopillar arrays on fibroblast motility, adhesion and migration mechanisms. Small 15, e1902514 (2019).

    Article  PubMed  CAS  Google Scholar 

  161. Carthew, J. et al. Next generation cell culture tools featuring micro- and nanotopographies for biological screening. Adv. Funct. Mater. 2100881 (2021).

  162. Xu, A. M. et al. Quantification of nanowire penetration into living cells. Nat. Commun. 5, 3613 (2014).

    Article  PubMed  CAS  Google Scholar 

  163. Dai, J., Gong, J., Kong, N. & Yao, Y. Cellular architecture response to aspect ratio tunable nanoarrays. Nanoscale 12, 12395–12404 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Messina, G. C. et al. Spatially, temporally, and quantitatively controlled delivery of broad range of molecules into selected cells through plasmonic nanotubes. Adv. Mater. 27, 7145–7149 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Xie, X. et al. Mechanical model of vertical nanowire cell penetration. Nano Lett. 13, 6002–6008 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Obataya, I., Nakamura, C., Han, S., Nakamura, N. & Miyake, J. Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy. Biosens. Bioelectron. 20, 1652–1655 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Zou, J., Li, J., Chen, T. & Li, X. Penetration mechanism of cells by vertical nanostructures. Phys. Rev. E 102, 052401 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Mumm, F., Beckwith, K. M., Bonde, S., Martinez, K. L. & Sikorski, P. A transparent nanowire-based cell impalement device suitable for detailed cell–nanowire interaction studies. Small 9, 263–272 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Staufer, O. et al. Adhesion stabilized en masse intracellular electrical recordings from multicellular assemblies. Nano Lett. 19, 3244–3255 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Stewart, M. P. et al. In vitro and ex vivo strategies for intracellular delivery. Nature 538, 183–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Wang, Y. et al. High-efficiency cellular reprogramming by nanoscale puncturing. Nano Lett. 20, 5473–5481 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Zhu, X. et al. Diamond-nanoneedle-array-facilitated intracellular delivery and the potential influence on cell physiology. Adv. Health Mater. 5, 1157–1168 (2016).

    Article  CAS  Google Scholar 

  173. Canales, R. D. et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat. Biotechnol. 24, 1115–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Uhlen, M. & Ponten, F. Antibody-based proteomics for human tissue profiling. Mol. Cell. Proteom. 4, 384–393 (2005).

    Article  CAS  Google Scholar 

  175. Fusaro, V. A., Mani, D. R., Mesirov, J. P. & Carr, S. A. Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nat. Biotechnol. 27, 190–198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. McKinnon, K. M. Flow cytometry: an overview. Curr. Protoc. Immunol. 120, 5.1.1–5.1.11 (2018).

    Article  Google Scholar 

  177. Wang, Z. et al. High-throughput intracellular biopsy of microRNAs for dissecting the temporal dynamics of cellular heterogeneity. Sci. Adv. 6, eaba4971 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Frederiksen, R. S. et al. Modulation of fluorescence signals from biomolecules along nanowires due to interaction of light with oriented nanostructures. Nano Lett. 15, 176–181 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Bell, D. M. Imaging morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20150511 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  180. Park, Y.-S., Yoon, S. Y., Park, J. S. & Lee, J. S. Deflection induced cellular focal adhesion and anisotropic growth on vertically aligned silicon nanowires with differing elasticity. NPG Asia Mater. 8, e249 (2016).

    Article  CAS  Google Scholar 

  181. Qi, S., Yi, C., Ji, S., Fong, C.-C. & Yang, M. Cell adhesion and spreading behavior on vertically aligned silicon nanowire arrays. ACS Appl. Mater. Interfaces 1, 30–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Bonde, S. et al. Exploring arrays of vertical one-dimensional nanostructures for cellular investigations. Nanotechnology 25, 362001 (2014).

    Article  PubMed  CAS  Google Scholar 

  183. Bucaro, M. A., Vasquez, Y., Hatton, B. D. & Aizenberg, J. Fine-tuning the degree of stem cell polarization and alignment on ordered arrays of high-aspect-ratio nanopillars. ACS Nano 6, 6222–6230 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Prinz, C. N. Interactions between semiconductor nanowires and living cells. J. Phys. Condens. Matter 27, 233103 (2015).

    Article  PubMed  CAS  Google Scholar 

  185. Li, Z., Persson, H., Adolfsson, K., Oredsson, S. & Prinz, C. N. Morphology of living cells cultured on nanowire arrays with varying nanowire densities and diameters. Sci. China Life Sci. 61, 427–435 (2018).

    PubMed  Google Scholar 

  186. Belu, A. et al. Ultra-thin resin embedding method for scanning electron microscopy of individual cells on high and low aspect ratio 3D nanostructures. J. Microsc. 263, 78–86 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Beckwith, K. S., Cooil, S. P., Wells, J. W. & Sikorski, P. Tunable high aspect ratio polymer nanostructures for cell interfaces. Nanoscale 7, 8438–8450 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Lou, H.-Y., Zhao, W., Zeng, Y. & Cui, B. The role of membrane curvature in nanoscale topography-induced intracellular signaling. Acc. Chem. Res. 51, 1046–1053 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Shevchuk, A. et al. Angular approach scanning ion conductance microscopy. Biophys. J. 110, 2252–2265 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bittermann, A. G., Burkhardt, C. & Hall, H. Imaging of cell-to-material interfaces by SEM after in situ focused ion beam milling on flat surfaces and complex 3D-fibrous structures. Adv. Eng. Mater. 11, B182–B188 (2009).

    Article  CAS  Google Scholar 

  191. Wierzbicki, R. et al. Mapping the complex morphology of cell interactions with nanowire substrates using FIB-SEM. PLoS One 8, e53307 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Santoro, F., Neumann, E., Panaitov, G. & Offenhäusser, A. FIB section of cell–electrode interface: an approach for reducing curtaining effects. Microelectron. Eng. 124, 17–21 (2014).

    Article  CAS  Google Scholar 

  193. Aslanoglou, S. et al. Efficient transmission electron microscopy characterization of cell–nanostructure interfacial interactions. J. Am. Chem. Soc. 142, 15649–15653 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Zimmerman, J. F. et al. Cellular uptake and dynamics of unlabeled freestanding silicon nanowires. Sci. Adv. 2, e1601039 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  195. Wrobel, G. et al. Transmission electron microscopy study of the cell-sensor interface. J. R. Soc. Interface 5, 213–222 (2008).

    Article  PubMed  Google Scholar 

  196. Fendyur, A., Mazurski, N., Shappir, J. & Spira, M. Formation of essential ultrastructural interface between cultured hippocampal cells and gold mushroom-shaped MEA- toward “IN-CELL” recordings from vertebrate neurons. Front. Neuroeng. 4,, 14 (2011).

    Article  Google Scholar 

  197. Persson, H. et al. Vertical oxide nanotubes connected by subsurface microchannels. Nano Res. 5, 190–198 (2012).

    Article  CAS  Google Scholar 

  198. Pennacchio, F. A. et al. Three-dimensionally patterned scaffolds modulate the biointerface at the nanoscale. Nano Lett. 19, 5118–5123 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. Aalipour, A., Xu, A. M., Leal-Ortiz, S., Garner, C. C. & Melosh, N. A. Plasma membrane and actin cytoskeleton as synergistic barriers to nanowire cell penetration. Langmuir 30, 12362–12367 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Chan Wah Hak, L. et al. FBP17 and CIP4 recruit SHIP2 and lamellipodin to prime the plasma membrane for fast endophilin-mediated endocytosis. Nat. Cell Biol. 20, 1023–1031 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Tsujita, K. et al. Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J. Cell Biol. 172, 269–279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Carthew, J. et al. Precision surface microtopography regulates cell fate via changes to actomyosin contractility and nuclear architecture. Adv. Sci. 8, 2003186 (2021).

    Article  CAS  Google Scholar 

  203. Lee, J., Chu, B. H., Chen, K.-H., Ren, F. & Lele, T. P. Randomly oriented, upright SiO2 coated nanorods for reduced adhesion of mammalian cells. Biomaterials 30, 4488–4493 (2009).

    Article  CAS  PubMed  Google Scholar 

  204. Lee, J. et al. The control of cell adhesion and viability by zinc oxide nanorods. Biomaterials 29, 3743–3749 (2008).

    Article  CAS  PubMed  Google Scholar 

  205. Choi, C.-H. et al. Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials 28, 1672–1679 (2007).

    Article  CAS  PubMed  Google Scholar 

  206. Bouter, A. et al. Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair. Nat. Commun. 2, 270 (2011).

    Article  PubMed  CAS  Google Scholar 

  207. Padmanabhan, J. et al. Engineering cellular response using nanopatterned bulk metallic glass. ACS Nano 8, 4366–4375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Shayan, M. et al. Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization. Acta Biomater. 75, 427–438 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wang, J. et al. Physical activation of innate immunity by spiky particles. Nat. Nanotechnol. 13, 1078–1086 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Hebisch, E., Hjort, M., Volpati, D. & Prinz, C. N. Nanostraw-assisted cellular injection of fluorescent nanodiamonds via direct membrane opening. Small 17, e2006421 (2021).

    Article  PubMed  CAS  Google Scholar 

  211. Caprettini, V. et al. Soft electroporation for delivering molecules into tightly adherent mammalian cells through 3D hollow nanoelectrodes. Sci. Rep. 7, 8524 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  212. Mann, D. G. J. et al. Inducible RNA interference-mediated gene silencing using nanostructured gene delivery arrays. ACS Nano 2, 69–76 (2008).

    Article  CAS  PubMed  Google Scholar 

  213. Yang, P. et al. Supramolecular nanosubstrate–mediated delivery system enables CRISPR-Cas9 knockin of hemoglobin beta gene for hemoglobinopathies. Sci. Adv. 6, eabb7107 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Xu, A. M., Wang, D. S., Shieh, P., Cao, Y. & Melosh, N. A. Direct intracellular delivery of cell-impermeable probes of protein glycosylation by using nanostraws. ChemBioChem 18, 623–628 (2017).

    Article  CAS  PubMed  Google Scholar 

  215. Kim, K. H. et al. Rapid, high-throughput, and direct molecular beacon delivery to human cancer cells using a nanowire-incorporated and pneumatic pressure-driven microdevice. Small 11, 6215–6224 (2015).

    Article  CAS  PubMed  Google Scholar 

  216. Xie, K. et al. Profiling microRNAs with associated spatial dynamics in acute tissue slices. ACS Nano 15, 4881–4892 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the Australian government (ARC DECRA project number: DE170100021). C.C. acknowledges funding from the European Research Council Starting Grant (ENBION 759577) and CureEB. N.H.V. acknowledges funding from the CSIRO Research Office for a Science Leader Fellowship and from the Alexander von Humboldt Foundation for Fellowship for Experienced Researchers. W.Z. acknowledges funding from Singapore Ministry of Education (MOE) Academic Research Fund Tier 1 (RG145/18 and RG112/20), Singapore National Research Foundation NRF-ISF joint grant (NRF2019-NRF-ISF003-3292) and Nanyang Technological University Start-Up Grant and NTU-NNI Neurotechnology Fellowship. X.X. acknowledges financial support from the National Natural Science Foundation of China (grant nos. 61771498, 51705543 and 31530023). H.M. thanks the Interdisciplinary Graduate School (IGS) Research Scholarship from the Ageing Research Institute for Society and Education at Nanyang Technological University. The work was conducted in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF).

Author information

Authors and Affiliations

Authors

Contributions

C.C., X.X., F.S., W.Z., N.H.V. and R.E. were responsible for conceptualization. C.C., W.Z., N.H.V. and R.E. were responsible for funding acquisition. C.C. and R.E. were responsible for project administration. C.C., Y.C., S.A., A.M., V.M., H.M., E.D.R., G.H., X.X., F.S., W.Z. and R.E. were responsible for writing the original draft.C.C., Y.C., S.A., A.M., V.M., H.M., G.H., E.T., X.X., F.S., W.Z., N.H.V. and R.E. were responsible for reviewing and editing the manuscript.

Corresponding authors

Correspondence to Ciro Chiappini, Xi Xie, Francesca Santoro, Wenting Zhao, Nicolas H. Voelcker or Roey Elnathan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiappini, C., Chen, Y., Aslanoglou, S. et al. Tutorial: using nanoneedles for intracellular delivery. Nat Protoc 16, 4539–4563 (2021). https://doi.org/10.1038/s41596-021-00600-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00600-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research