Abstract
Intracellular delivery of advanced therapeutics, including biologicals and supramolecular agents, is complex because of the natural biological barriers that have evolved to protect the cell. Efficient delivery of therapeutic nucleic acids, proteins, peptides and nanoparticles is crucial for clinical adoption of emerging technologies that can benefit disease treatment through gene and cell therapy. Nanoneedles are arrays of vertical high-aspect-ratio nanostructures that can precisely manipulate complex processes at the cell interface, enabling effective intracellular delivery. This emerging technology has already enabled the development of efficient and non-destructive routes for direct access to intracellular environments and delivery of cell-impermeant payloads. However, successful implementation of this technology requires knowledge of several scientific fields, making it complex to access and adopt by researchers who are not directly involved in developing nanoneedle platforms. This presents an obstacle to the widespread adoption of nanoneedle technologies for drug delivery. This tutorial aims to equip researchers with the knowledge required to develop a nanoinjection workflow. It discusses the selection of nanoneedle devices, approaches for cargo loading and strategies for interfacing to biological systems and summarises an array of bioassays that can be used to evaluate the efficacy of intracellular delivery.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
This paper does not include previously unpublished results. Thus, no data in raw format are made available.
References
Stewart, M. P., Langer, R. & Jensen, K. F. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem. Rev. 118, 7409–7531 (2018).
Brooks, J. et al. High throughput and highly controllable methods for in vitro intracellular delivery. Small 16, e2004917 (2020).
Elnathan, R., Kwiat, M., Patolsky, F. & Voelcker, N. H. Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today 9, 172–196 (2014).
Tay, A. The benefits of going small: nanostructures for mammalian cell transfection. ACS Nano 14, 7714–7721 (2020).
He, G. et al. Nanoneedle platforms: the many ways to pierce the cell membrane. Adv. Funct. Mater. 30, 1909890 (2020).
Tay, A. & Melosh, N. Transfection with nanostructure electro-injection is minimally perturbative. Adv. Ther. 52, 1900133 (2019).
Higgins, S. G. et al. High-aspect-ratio nanostructured surfaces as biological metamaterials. Adv. Mater. 32, e1903862 (2020).
Hanson, L., Lin, Z. C., Xie, C., Cui, Y. & Cui, B. Characterization of the cell–nanopillar interface by transmission electron microscopy. Nano Lett. 12, 5815–5820 (2012).
Liu, R. et al. High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett. 17, 2757–2764 (2017).
Abbott, J., Ye, T., Ham, D. & Park, H. Optimizing nanoelectrode arrays for scalable intracellular electrophysiology. Acc. Chem. Res. 51, 600–608 (2018).
Chen, Y. et al. Emerging roles of 1D vertical nanostructures in orchestrating immune cell functions. Adv. Mater. 32, e2001668 (2020).
Cao, Y. et al. Universal intracellular biomolecule delivery with precise dosage control. Sci. Adv. 4, eaat8131 (2018).
Chen, Y. et al. Silicon-nanotube-mediated intracellular delivery enables ex vivo gene editing. Adv. Mater. 32, e2000036 (2020).
Shalek, A. K. et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl Acad. Sci. USA 107, 1870–1875 (2010).
Wang, Y. et al. Poking cells for efficient vector-free intracellular delivery. Nat. Commun. 5, 4466 (2014).
Wang, Z. et al. Interrogation of cellular innate immunity by diamond-nanoneedle-assisted intracellular molecular fishing. Nano Lett. 15, 7058–7063 (2015).
Chiappini, C. et al. Mapping local cytosolic enzymatic activity in human esophageal mucosa with porous silicon nanoneedles. Adv. Mater. 27, 5147–5152 (2015).
Chen, Y. et al. Cellular deformations induced by conical silicon nanowire arrays facilitate gene delivery. Small 15, e1904819 (2019).
Schmiderer, L. et al. Efficient and nontoxic biomolecule delivery to primary human hematopoietic stem cells using nanostraws. Proc. Natl Acad. Sci. USA 117, 21267–21273 (2020).
Tian, B. et al. Roadmap on semiconductor–cell biointerfaces. Phys. Biol. 15, 031002 (2018).
Berthing, T. et al. Cell membrane conformation at vertical nanowire array interface revealed by fluorescence imaging. Nanotechnology 23, 415102 (2012).
Persson, H. et al. Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. Small 9, 4006–4016 (2013).
Buch-Manson, N. et al. Mapping cell behavior across a wide range of vertical silicon nanocolumn densities. Nanoscale 9, 5517–5527 (2017).
Zhao, W. et al. Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. Nat. Nanotechnol. 12, 750–756 (2017).
Kim, J., Kim, S., Ahn, J., Lee, J. & Nam, J.-M. A lipid-nanopillar-array-based immunosorbent assay. Adv. Mater. 32, e2001360 (2020).
Chiappini, C. et al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 14, 532–539 (2015).
Kim, H. et al. Bioresorbable, miniaturized porous silicon needles on a flexible water-soluble backing for unobtrusive, sustained delivery of chemotherapy. ACS Nano 14, 7227–7236 (2020).
Peer, E., Artzy-Schnirman, A., Gepstein, L. & Sivan, U. Hollow nanoneedle array and its utilization for repeated administration of biomolecules to the same cells. ACS Nano 6, 4940–4946 (2012).
VanDersarl, J. J., Xu, A. M. & Melosh, N. A. Nanostraws for direct fluidic intracellular access. Nano Lett. 12, 3881–3886 (2012).
Xie, X. et al. Nanostraw–electroporation system for highly efficient intracellular delivery and transfection. ACS Nano 7, 4351–4358 (2013).
Lin, Z. C., Xie, C., Osakada, Y., Cui, Y. & Cui, B. Iridium oxide nanotube electrodes for highly sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 5, 3206 (2014).
Robinson, J. T. et al. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012).
Xie, C., Lin, Z., Hanson, L., Cui, Y. & Cui, B. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012).
Wen, R. et al. Intracellular delivery and sensing system based on electroplated conductive nanostraw arrays. ACS Appl. Mater. Interfaces 11, 43936–43948 (2019).
Piret, G., Perez, M.-T. & Prinz, C. N. Neurite outgrowth and synaptophysin expression of postnatal CNS neurons on GaP nanowire arrays in long-term retinal cell culture. Biomaterials 34, 875–887 (2013).
Persson, H., Li, Z., Tegenfeldt, J. O., Oredsson, S. & Prinz, C. N. From immobilized cells to motile cells on a bed-of-nails: effects of vertical nanowire array density on cell behaviour. Sci. Rep. 5, 18535 (2015).
Ozel, T. et al. Electrochemical deposition of conformal and functional layers on high aspect ratio silicon micro/nanowires. Nano Lett. 17, 4502–4507 (2017).
La Rocca, R., Messina, G. C., Dipalo, M., Shalabaeva, V. & De Angelis, F. Out-of-plane plasmonic antennas for raman analysis in living cells. Small 11, 4632–4637 (2015).
Elnathan, R. et al. Maximizing transfection efficiency of vertically aligned silicon nanowire arrays. Adv. Funct. Mater. 25, 7215–7225 (2015).
Buch-Månson, N. et al. Towards a better prediction of cell settling on nanostructure arrays—simple means to complicated ends. Adv. Funct. Mater. 25, 3246–3255 (2015).
Wang, S., Shan, Z. & Huang, H. The mechanical properties of nanowires. Adv. Sci. 4, 1600332 (2017).
Santoro, F. et al. Revealing the cell–material interface with nanometer resolution by focused ion beam/scanning electron microscopy. ACS Nano 11, 8320–8328 (2017).
Li, X. et al. A nanostructure platform for live-cell manipulation of membrane curvature. Nat. Protoc. 14, 1772–1802 (2019).
Han, S., Nakamura, C., Obataya, I., Nakamura, N. & Miyake, J. Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness. Biochem. Biophys. Res. Commun. 332, 633–639 (2005).
Canham, L. Handbook of Porous Silicon (Springer, 2014).
Alhmoud, H., Brodoceanu, D., Elnathan, R., Kraus, T. & Voelcker, N. H. A MACEing silicon: towards single-step etching of defined porous nanostructures for biomedicine. Prog. Mater. Sci. 116, 100636 (2021).
Hansel, C. S. et al. Nanoneedle-mediated stimulation of cell mechanotransduction machinery. ACS Nano 13, 2913–2926 (2019).
Cunin, F. et al. Biomolecular screening with encoded porous-silicon photonic crystals. Nat. Mater. 1, 39–41 (2002).
Chiappini, C. et al. Tailored porous silicon microparticles: fabrication and properties. Chemphyschem 11, 1029–1035 (2010).
Salonen, J. & Mäkilä, E. Thermally carbonized porous silicon and its recent applications. Adv. Mater. 30, e1703819 (2018).
Chiappini, C., Liu, X., Fakhoury, J. R. & Ferrari, M. Biodegradable porous silicon barcode nanowires with defined geometry. Adv. Funct. Mater. 20, 2231–2239 (2010).
Elnathan, R. et al. Versatile particle-based route to engineer vertically aligned silicon nanowire arrays and nanoscale pores. ACS Appl. Mater. Interfaces 7, 23717–23724 (2015).
Rey, B. M. et al. Fully tunable silicon nanowire arrays fabricated by soft nanoparticle templating. Nano Lett. 16, 157–163 (2016).
He, G. et al. Multifunctional branched nanostraw-electroporation platform for intracellular regulation and monitoring of circulating tumor cells. Nano Lett. 19, 7201–7209 (2019).
He, G. et al. Hierarchical spiky microstraws-integrated microfluidic device for efficient capture and in situ manipulation of cancer cells. Adv. Funct. Mater. 29, 1806484 (2019).
Dipalo, M. et al. Cells adhering to 3D vertical nanostructures: cell membrane reshaping without stable internalization. Nano Lett. 18, 6100–6105 (2018).
Dipalo, M. et al. Membrane poration mechanisms at the cell–nanostructure interface. Adv. Biosyst. 3, e1900148 (2019).
Liu, J., Fraire, J. C., De Smedt, S. C., Xiong, R. & Braeckmans, K. Intracellular labeling with extrinsic probes: delivery strategies and applications. Small 16, e2000146 (2020).
Abbott, J. et al. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12, 460–466 (2017).
Na, Y.-R. et al. Probing enzymatic activity inside living cells using a nanowire–cell “sandwich” assay. Nano Lett. 13, 153–158 (2013).
Yurugi, H. et al. A subset of flavaglines inhibits KRAS nanoclustering and activation. J. Cell Sci. 133, jcs244111 (2020).
Lou, H.-Y. et al. Membrane curvature underlies actin reorganization in response to nanoscale surface topography. Proc. Natl Acad. Sci. USA 116, 23143–23151 (2019).
Liang, H. et al. Membrane curvature sensing of the lipid-anchored K-Ras small GTPase. Life Sci. Alliance 2, e201900343 (2019).
Nagy, N. et al. Hyaluronan content governs tissue stiffness in pancreatic islet inflammation. J. Biol. Chem. 293, 567–578 (2018).
Hanson, L. et al. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. Nat. Nanotechnol. 10, 554–562 (2015).
Duan, X. & Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000).
Schmidt, V., Wittemann, J. V., Senz, S. & Gösele, U. Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv. Mater. 21, 2681–2702 (2009).
Dabkowska, A. P. et al. Fluid and highly curved model membranes on vertical nanowire arrays. Nano Lett. 14, 4286–4292 (2014).
Wu, Y. et al. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4, 433–436 (2004).
Wang, F. et al. Solution−liquid−solid growth of semiconductor nanowires. Inorg. Chem. 45, 7511–7521 (2006).
Hochbaum, A. I., Fan, R., He, R. & Yang, P. Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5, 457–460 (2005).
Fu, Y. Q. et al. Deep reactive ion etching as a tool for nanostructure fabrication. J. Vac. Sci. Technol. B Microelectron. Nanometer. Struct. Process Meas. Phenom. 27, 1520–1526 (2009).
Yang, N., Uetsuka, H., Osawa, E. & Nebel, C. E. Vertically aligned nanowires from boron-doped diamond. Nano Lett. 8, 3572–3576 (2008).
Cheung, C. L., Nikolić, R. J., Reinhardt, C. E. & Wang, T. F. Fabrication of nanopillars by nanosphere lithography. Nanotechnology 17, 1339–1343 (2006).
Hsu, C.-M., Connor, S. T., Tang, M. X. & Cui, Y. Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching. Appl. Phys. Lett. 93, 133109 (2008).
Lin, H. et al. Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping. J. Mater. Chem. A 1, 9942–9946 (2013).
Brodoceanu, D. et al. Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching. Nanotechnology 27, 075301 (2016).
Harding, F. J. et al. Ordered silicon pillar arrays prepared by electrochemical micromachining: substrates for high-efficiency cell transfection. ACS Appl. Mater. Interfaces 8, 29197–29202 (2016).
Huang, Z., Geyer, N., Werner, P., de Boor, J. & Gösele, U. Metal-assisted chemical etching of silicon: a review. Adv. Mater. 23, 285–308 (2011).
Lévy-Clément, C. Porous silicon formation by metal nanoparticle-assisted etching. in Handbook of Porous Silicon. (ed. Canham, L.) 61–78 (Springer, 2018).
Chiappini, C. MACE silicon nanostructures. in Handbook of Porous Silicon. (ed. Canham, L.) 247–267 (Springer, 2018).
Alhmoud, H. et al. Antibacterial properties of silver dendrite decorated silicon nanowires. RSC Adv. 6, 65976–65987 (2016).
Fernández-Rodríguez, M. Á. et al. Tunable 2D binary colloidal alloys for soft nanotemplating. Nanoscale 10, 22189–22195 (2018).
Li, L. et al. Controlling the geometries of Si nanowires through tunable nanosphere lithography. ACS Appl. Mater. Interfaces 9, 7368–7375 (2017).
Scheidegger, L. et al. Compression and deposition of microgel monolayers from fluid interfaces: particle size effects on interface microstructure and nanolithography. Phys. Chem. Chem. Phys. 19, 8671–8680 (2017).
He, G. et al. Hollow nanoneedle-electroporation system to extract intracellular protein repetitively and nondestructively. ACS Sens. 3, 1675–1682 (2018).
Feng, J. et al. Antibody-free isolation and regulation of adherent cancer cells via hybrid branched microtube-sandwiched hydrodynamic system. Nanoscale 12, 5103–5113 (2020).
Elnathan, R., Kantaev, R. & Patolsky, F. Synthesis of hybrid multicomponent disklike nanoparticles. Nano Lett. 8, 3964–3972 (2008).
Zhang, Q. B., Xu, D., Hung, T. F. & Zhang, K. Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates. Nanotechnology 24, 065602 (2013).
Kim, H. et al. Flexible elastomer patch with vertical silicon nanoneedles for intracellular and intratissue nanoinjection of biomolecules. Sci. Adv. 4, eaau6972 (2018).
Elnathan, R. et al. Optically transparent vertical silicon nanowire arrays for live-cell imaging. J. Nanobiotechnology 19, 51 (2021).
Tullii, G. et al. High-aspect-ratio semiconducting polymer pillars for 3D cell cultures. ACS Appl. Mater. Interfaces 11, 28125–28137 (2019).
Zhang, Y., Lo, C.-W., Taylor, J. A. & Yang, S. Replica molding of high-aspect-ratio polymeric nanopillar arrays with high fidelity. Langmuir 22, 8595–8601 (2006).
Xu, X. et al. Multiple-patterning nanosphere lithography for fabricating periodic three-dimensional hierarchical nanostructures. ACS Nano 11, 10384–10391 (2017).
Chiappini, C. Nanoneedle-based sensing in biological systems. ACS Sens. 2, 1086–1102 (2017).
Huang, J.-A. et al. On-demand intracellular delivery of single particles in single cells by 3D hollow nanoelectrodes. Nano Lett. 19, 722–731 (2019).
Shokouhi, A.-R., Aslanoglou, S., Nisbet, D., Voelcker, N. H. & Elnathan, R. Vertically configured nanostructure-mediated electroporation: a promising route for intracellular regulations and interrogations. Mater. Horiz. 7, 2810–2831 (2020).
Vutti, S. et al. Click chemistry mediated functionalization of vertical nanowires for biological applications. Chemistry 22, 496–500 (2016).
Mendes, P. M. Cellular nanotechnology: making biological interfaces smarter. Chem. Soc. Rev. 42, 9207–9218 (2013).
Qu, Y. et al. A universal platform for high-efficiency “engineering” living cells: integration of cell capture, intracellular delivery of biomolecules, and cell harvesting functions. Adv. Funct. Mater. 30, 1906362 (2020).
Lee, K., Lingampalli, N., Pisano, A. P., Murthy, N. & So, H. Physical delivery of macromolecules using high-aspect ratio nanostructured materials. ACS Appl. Mater. Interfaces 7, 23387–23397 (2015).
Kwak, M., Han, L., Chen, J. J. & Fan, R. Interfacing inorganic nanowire arrays and living cells for cellular function analysis. Small 11, 5600–5610 (2015).
Higgins, S. G. & Stevens, M. M. Extracting the contents of living cells. Science 356, 379–380 (2017).
Tay, A. & Melosh, N. Nanostructured materials for intracellular cargo delivery. Acc. Chem. Res. 52, 2462–2471 (2019).
Fajrial, A. K. & Ding, X. Advanced nanostructures for cell membrane poration. Nanotechnology 30, 264002 (2019).
McGuire, A. F., Santoro, F. & Cui, B. Interfacing cells with vertical nanoscale devices: applications and characterization. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 11, 101–126 (2018).
Seong, H. et al. Size-tunable nanoneedle arrays for influencing stem cell morphology, gene expression, and nuclear membrane curvature. ACS Nano 14, 5371–5381 (2020).
Gopal, S. et al. Porous silicon nanoneedles modulate endocytosis to deliver biological payloads. Adv. Mater. 31, e1806788 (2019).
Yamagishi, A. et al. Direct delivery of Cas9-sgRNA ribonucleoproteins into cells using a nanoneedle array. Appl. Sci. 9, 965 (2019).
Qu, Y., Zhang, Y., Yu, Q. & Chen, H. Surface-mediated intracellular delivery by physical membrane disruption. ACS Appl. Mater. Interfaces 12, 31054–31078 (2020).
Dixit, H. G. et al. Massively-parallelized, deterministic mechanoporation for intracellular delivery. Nano Lett. 20, 860–867 (2020).
Zhang, B., Shi, Y., Miyamoto, D., Nakazawa, K. & Miyake, T. Nanostraw membrane stamping for direct delivery of molecules into adhesive cells. Sci. Rep. 9, 6806 (2019).
Matsumoto, D. et al. Oscillating high-aspect-ratio monolithic silicon nanoneedle array enables efficient delivery of functional bio-macromolecules into living cells. Sci. Rep. 5, 15325 (2015).
Yum, K., Yu, M.-F., Wang, N. & Xiang, Y. K. Biofunctionalized nanoneedles for the direct and site-selective delivery of probes into living cells. Biochim. Biophys. Acta 1810, 330–338 (2011).
Anglin, E. J., Cheng, L., Freeman, W. R. & Sailor, M. J. Porous silicon in drug delivery devices and materials. Adv. Drug Deliv. Rev. 60, 1266–1277 (2008).
Tieu, T., Alba, M., Elnathan, R., Cifuentes-Rius, A. & Voelcker, N. H. Advances in porous silicon–based nanomaterials for diagnostic and therapeutic applications. Adv. Ther. 2, 1800095 (2019).
Xu, A. M., Kim, S. A., Wang, D. S., Aalipour, A. & Melosh, N. A. Temporally resolved direct delivery of second messengers into cells using nanostraws. Lab Chip 16, 2434–2439 (2016).
Amin, H., Dipalo, M., De Angelis, F. & Berdondini, L. Biofunctionalized 3D nanopillar arrays fostering cell guidance and promoting synapse stability and neuronal activity in networks. ACS Appl. Mater. Interface 10, 15207–15215 (2018).
Kwiat, M. et al. Non-covalent monolayer-piercing anchoring of lipophilic nucleic acids: preparation, characterization, and sensing applications. J. Am. Chem. Soc. 134, 280–292 (2012).
Le Saux, G. et al. Nanoscale mechanosensing of natural killer cells is revealed by antigen-functionalized nanowires. Adv. Mater. 31, e1805954 (2019).
Nair, B. G. et al. High density of aligned nanowire treated with polydopamine for efficient gene silencing by siRNA according to cell membrane perturbation. ACS Appl. Mater. Interfaces 8, 18693–18700 (2016).
Choi, M. et al. Intracellular delivery of bioactive cargos to hard-to-transfect cells using carbon nanosyringe arrays under an applied centrifugal g-force. Adv. Healthc. Mater. 5, 101–107 (2016).
Kim, W., Ng, J. K., Kunitake, M. E., Conklin, B. R. & Yang, P. Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 129, 7228–7229 (2007).
Chan, M. S. & Lo, P. K. Nanoneedle-assisted delivery of site-selective peptide-functionalized DNA nanocages for targeting mitochondria and nuclei. Small 10, 1255–1260 (2014).
Sahoo, P. K. et al. Nanowire arrays as cell force sensors to investigate adhesin-enhanced holdfast of single cell bacteria and biofilm stability. Nano Lett. 16, 4656–4664 (2016).
Boukherroub, R., Petit, A., Loupy, A., Chazalviel, J.-N. & Ozanam, F. Microwave-assisted chemical functionalization of hydrogen-terminated porous silicon surfaces. J. Phys. Chem. B 107, 13459–13462 (2003).
Buriak, J. M. et al. Lewis acid mediated hydrosilylation on porous silicon surfaces. J. Am. Chem. Soc. 121, 11491–11502 (1999).
Flavel, B. S., Sweetman, M. J., Shearer, C. J., Shapter, J. G. & Voelcker, N. H. Micropatterned arrays of porous silicon: toward sensory biointerfaces. ACS Appl. Mater. Interfaces 3, 2463–2471 (2011).
Streifer, J. A., Kim, H., Nichols, B. M. & Hamers, R. J. Covalent functionalization and biomolecular recognition properties of DNA-modified silicon nanowires. Nanotechnology 16, 1868–1873 (2005).
Leriche, G., Chisholm, L. & Wagner, A. Cleavable linkers in chemical biology. Bioorg. Med. Chem. 20, 571–582 (2012).
Zhao, Y. et al. Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat. Nanotechnol. 14, 783–790 (2019).
Tian, B. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).
Duan, X. et al. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2011).
Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009).
Shalek, A. K. et al. Nanowire-mediated delivery enables functional interrogation of primary immune cells: application to the analysis of chronic lymphocytic leukemia. Nano Lett. 12, 6498–6504 (2012).
Chiappini, C. et al. Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: exploring the biointerface. ACS Nano 9, 5500–5509 (2015).
Lestrell, E., Patolsky, F., Voelcker, N. H. & Elnathan, R. Engineered nano-bio interfaces for intracellular delivery and sampling: applications, agency and artefacts. Mater. Today 33, 87–104 (2020).
Cao, Y. et al. Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules. Proc. Natl Acad. Sci. USA 116, 7899–7904 (2019).
Kumar, A. R. K., Shou, Y., Chan, B., L, K. & Tay, A. Materials for improving immune cell transfection. Adv. Mater. 33, e2007421 (2021).
Xie, X., Aalipour, A., Gupta, S. V. & Melosh, N. A. Determining the time window for dynamic nanowire cell penetration processes. ACS Nano 9, 11667–11677 (2015).
Saklayen, N. et al. Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates. ACS Nano 11, 3671–3680 (2017).
Man, T. et al. Intracellular photothermal delivery for suspension cells using sharp nanoscale tips in microwells. ACS Nano 13, 10835–10844 (2019).
Liu, Z. et al. Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator. Adv. Mater. 31, e1807795 (2019).
Chevrier, N. et al. Systematic discovery of TLR signaling components delineates viral-sensing circuits. Cell 147, 853–867 (2011).
Yosef, N. et al. Dynamic regulatory network controlling Th17 cell differentiation. Nature 496, 461–468 (2013).
Tan, J. T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl Acad. Sci. USA 98, 8732–8737 (2001).
Liu, K. & Rosenberg, S. A. Interleukin-2-independent proliferation of human melanoma-reactive T lymphocytes transduced with an exogenous IL-2 gene is stimulation dependent. J. Immunother. 26, 190–201 (2003).
Topp, M. S. et al. Restoration of CD28 expression in CD28− CD8+ memory effector T cells reconstitutes antigen-induced IL-2 production. J. Exp. Med. 198, 947–955 (2003).
Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).
Metavarayuth, K., Sitasuwan, P., Zhao, X., Lin, Y. & Wang, Q. Influence of surface topographical cues on the differentiation of mesenchymal stem cells in vitro. ACS Biomater. Sci. Eng. 2, 142–151 (2016).
Xu, C. et al. Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23, 315–323 (2005).
Harberts, J. et al. Interfacing human induced pluripotent stem cell-derived neurons with designed nanowire arrays as a future platform for medical applications. Biomater. Sci. 8, 2434–2446 (2020).
Gerstel, M. S. & Place, V. A. National Center for Biotechnology Information. PubChem Patent Summary: Drug Delivery Device. US-3964482-A (1976); https://pubchem.ncbi.nlm.nih.gov/patent/US-3964482-A
Dervisevic, M., Alba, M., Prieto-Simon, B. & Voelcker, N. H. Skin in the diagnostics game: wearable biosensor nano- and microsystems for medical diagnostics. Nano Today 30, 100828 (2020).
Quinn, H. L., Kearney, M. C., Courtenay, A. J., McCrudden, M. T. & Donnelly, R. F. The role of microneedles for drug and vaccine delivery. Expert Opin. Drug Deliv. 11, 1769–1780 (2014).
Depelsenaire, A. C. I. et al. Colocalization of cell death with antigen deposition in skin enhances vaccine immunogenicity. J. Invest. Dermatol. 134, 2361–2370 (2014).
Gill, H. S., Söderholm, J., Prausnitz, M. R. & Sällberg, M. Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. Gene Ther. 17, 811–814 (2010).
Li, W. et al. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat. Biomed. Eng. 3, 220–229 (2019).
Bonde, S. et al. Tuning InAs nanowire density for HEK293 cell viability, adhesion, and morphology: perspectives for nanowire-based biosensors. ACS Appl. Mater. Interfaces 5, 10510–10519 (2013).
Beckwith, K. S., Ullmann, S., Vinje, J. & Sikorski, P. Influence of nanopillar arrays on fibroblast motility, adhesion and migration mechanisms. Small 15, e1902514 (2019).
Carthew, J. et al. Next generation cell culture tools featuring micro- and nanotopographies for biological screening. Adv. Funct. Mater. 2100881 (2021).
Xu, A. M. et al. Quantification of nanowire penetration into living cells. Nat. Commun. 5, 3613 (2014).
Dai, J., Gong, J., Kong, N. & Yao, Y. Cellular architecture response to aspect ratio tunable nanoarrays. Nanoscale 12, 12395–12404 (2020).
Messina, G. C. et al. Spatially, temporally, and quantitatively controlled delivery of broad range of molecules into selected cells through plasmonic nanotubes. Adv. Mater. 27, 7145–7149 (2015).
Xie, X. et al. Mechanical model of vertical nanowire cell penetration. Nano Lett. 13, 6002–6008 (2013).
Obataya, I., Nakamura, C., Han, S., Nakamura, N. & Miyake, J. Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy. Biosens. Bioelectron. 20, 1652–1655 (2005).
Zou, J., Li, J., Chen, T. & Li, X. Penetration mechanism of cells by vertical nanostructures. Phys. Rev. E 102, 052401 (2020).
Mumm, F., Beckwith, K. M., Bonde, S., Martinez, K. L. & Sikorski, P. A transparent nanowire-based cell impalement device suitable for detailed cell–nanowire interaction studies. Small 9, 263–272 (2013).
Staufer, O. et al. Adhesion stabilized en masse intracellular electrical recordings from multicellular assemblies. Nano Lett. 19, 3244–3255 (2019).
Stewart, M. P. et al. In vitro and ex vivo strategies for intracellular delivery. Nature 538, 183–192 (2016).
Wang, Y. et al. High-efficiency cellular reprogramming by nanoscale puncturing. Nano Lett. 20, 5473–5481 (2020).
Zhu, X. et al. Diamond-nanoneedle-array-facilitated intracellular delivery and the potential influence on cell physiology. Adv. Health Mater. 5, 1157–1168 (2016).
Canales, R. D. et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat. Biotechnol. 24, 1115–1122 (2006).
Uhlen, M. & Ponten, F. Antibody-based proteomics for human tissue profiling. Mol. Cell. Proteom. 4, 384–393 (2005).
Fusaro, V. A., Mani, D. R., Mesirov, J. P. & Carr, S. A. Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nat. Biotechnol. 27, 190–198 (2009).
McKinnon, K. M. Flow cytometry: an overview. Curr. Protoc. Immunol. 120, 5.1.1–5.1.11 (2018).
Wang, Z. et al. High-throughput intracellular biopsy of microRNAs for dissecting the temporal dynamics of cellular heterogeneity. Sci. Adv. 6, eaba4971 (2020).
Frederiksen, R. S. et al. Modulation of fluorescence signals from biomolecules along nanowires due to interaction of light with oriented nanostructures. Nano Lett. 15, 176–181 (2015).
Bell, D. M. Imaging morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20150511 (2017).
Park, Y.-S., Yoon, S. Y., Park, J. S. & Lee, J. S. Deflection induced cellular focal adhesion and anisotropic growth on vertically aligned silicon nanowires with differing elasticity. NPG Asia Mater. 8, e249 (2016).
Qi, S., Yi, C., Ji, S., Fong, C.-C. & Yang, M. Cell adhesion and spreading behavior on vertically aligned silicon nanowire arrays. ACS Appl. Mater. Interfaces 1, 30–34 (2009).
Bonde, S. et al. Exploring arrays of vertical one-dimensional nanostructures for cellular investigations. Nanotechnology 25, 362001 (2014).
Bucaro, M. A., Vasquez, Y., Hatton, B. D. & Aizenberg, J. Fine-tuning the degree of stem cell polarization and alignment on ordered arrays of high-aspect-ratio nanopillars. ACS Nano 6, 6222–6230 (2012).
Prinz, C. N. Interactions between semiconductor nanowires and living cells. J. Phys. Condens. Matter 27, 233103 (2015).
Li, Z., Persson, H., Adolfsson, K., Oredsson, S. & Prinz, C. N. Morphology of living cells cultured on nanowire arrays with varying nanowire densities and diameters. Sci. China Life Sci. 61, 427–435 (2018).
Belu, A. et al. Ultra-thin resin embedding method for scanning electron microscopy of individual cells on high and low aspect ratio 3D nanostructures. J. Microsc. 263, 78–86 (2016).
Beckwith, K. S., Cooil, S. P., Wells, J. W. & Sikorski, P. Tunable high aspect ratio polymer nanostructures for cell interfaces. Nanoscale 7, 8438–8450 (2015).
Lou, H.-Y., Zhao, W., Zeng, Y. & Cui, B. The role of membrane curvature in nanoscale topography-induced intracellular signaling. Acc. Chem. Res. 51, 1046–1053 (2018).
Shevchuk, A. et al. Angular approach scanning ion conductance microscopy. Biophys. J. 110, 2252–2265 (2016).
Bittermann, A. G., Burkhardt, C. & Hall, H. Imaging of cell-to-material interfaces by SEM after in situ focused ion beam milling on flat surfaces and complex 3D-fibrous structures. Adv. Eng. Mater. 11, B182–B188 (2009).
Wierzbicki, R. et al. Mapping the complex morphology of cell interactions with nanowire substrates using FIB-SEM. PLoS One 8, e53307 (2013).
Santoro, F., Neumann, E., Panaitov, G. & Offenhäusser, A. FIB section of cell–electrode interface: an approach for reducing curtaining effects. Microelectron. Eng. 124, 17–21 (2014).
Aslanoglou, S. et al. Efficient transmission electron microscopy characterization of cell–nanostructure interfacial interactions. J. Am. Chem. Soc. 142, 15649–15653 (2020).
Zimmerman, J. F. et al. Cellular uptake and dynamics of unlabeled freestanding silicon nanowires. Sci. Adv. 2, e1601039 (2016).
Wrobel, G. et al. Transmission electron microscopy study of the cell-sensor interface. J. R. Soc. Interface 5, 213–222 (2008).
Fendyur, A., Mazurski, N., Shappir, J. & Spira, M. Formation of essential ultrastructural interface between cultured hippocampal cells and gold mushroom-shaped MEA- toward “IN-CELL” recordings from vertebrate neurons. Front. Neuroeng. 4,, 14 (2011).
Persson, H. et al. Vertical oxide nanotubes connected by subsurface microchannels. Nano Res. 5, 190–198 (2012).
Pennacchio, F. A. et al. Three-dimensionally patterned scaffolds modulate the biointerface at the nanoscale. Nano Lett. 19, 5118–5123 (2019).
Aalipour, A., Xu, A. M., Leal-Ortiz, S., Garner, C. C. & Melosh, N. A. Plasma membrane and actin cytoskeleton as synergistic barriers to nanowire cell penetration. Langmuir 30, 12362–12367 (2014).
Chan Wah Hak, L. et al. FBP17 and CIP4 recruit SHIP2 and lamellipodin to prime the plasma membrane for fast endophilin-mediated endocytosis. Nat. Cell Biol. 20, 1023–1031 (2018).
Tsujita, K. et al. Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J. Cell Biol. 172, 269–279 (2006).
Carthew, J. et al. Precision surface microtopography regulates cell fate via changes to actomyosin contractility and nuclear architecture. Adv. Sci. 8, 2003186 (2021).
Lee, J., Chu, B. H., Chen, K.-H., Ren, F. & Lele, T. P. Randomly oriented, upright SiO2 coated nanorods for reduced adhesion of mammalian cells. Biomaterials 30, 4488–4493 (2009).
Lee, J. et al. The control of cell adhesion and viability by zinc oxide nanorods. Biomaterials 29, 3743–3749 (2008).
Choi, C.-H. et al. Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials 28, 1672–1679 (2007).
Bouter, A. et al. Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair. Nat. Commun. 2, 270 (2011).
Padmanabhan, J. et al. Engineering cellular response using nanopatterned bulk metallic glass. ACS Nano 8, 4366–4375 (2014).
Shayan, M. et al. Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization. Acta Biomater. 75, 427–438 (2018).
Wang, J. et al. Physical activation of innate immunity by spiky particles. Nat. Nanotechnol. 13, 1078–1086 (2018).
Hebisch, E., Hjort, M., Volpati, D. & Prinz, C. N. Nanostraw-assisted cellular injection of fluorescent nanodiamonds via direct membrane opening. Small 17, e2006421 (2021).
Caprettini, V. et al. Soft electroporation for delivering molecules into tightly adherent mammalian cells through 3D hollow nanoelectrodes. Sci. Rep. 7, 8524 (2017).
Mann, D. G. J. et al. Inducible RNA interference-mediated gene silencing using nanostructured gene delivery arrays. ACS Nano 2, 69–76 (2008).
Yang, P. et al. Supramolecular nanosubstrate–mediated delivery system enables CRISPR-Cas9 knockin of hemoglobin beta gene for hemoglobinopathies. Sci. Adv. 6, eabb7107 (2020).
Xu, A. M., Wang, D. S., Shieh, P., Cao, Y. & Melosh, N. A. Direct intracellular delivery of cell-impermeable probes of protein glycosylation by using nanostraws. ChemBioChem 18, 623–628 (2017).
Kim, K. H. et al. Rapid, high-throughput, and direct molecular beacon delivery to human cancer cells using a nanowire-incorporated and pneumatic pressure-driven microdevice. Small 11, 6215–6224 (2015).
Xie, K. et al. Profiling microRNAs with associated spatial dynamics in acute tissue slices. ACS Nano 15, 4881–4892 (2021).
Acknowledgements
This work was funded in part by the Australian government (ARC DECRA project number: DE170100021). C.C. acknowledges funding from the European Research Council Starting Grant (ENBION 759577) and CureEB. N.H.V. acknowledges funding from the CSIRO Research Office for a Science Leader Fellowship and from the Alexander von Humboldt Foundation for Fellowship for Experienced Researchers. W.Z. acknowledges funding from Singapore Ministry of Education (MOE) Academic Research Fund Tier 1 (RG145/18 and RG112/20), Singapore National Research Foundation NRF-ISF joint grant (NRF2019-NRF-ISF003-3292) and Nanyang Technological University Start-Up Grant and NTU-NNI Neurotechnology Fellowship. X.X. acknowledges financial support from the National Natural Science Foundation of China (grant nos. 61771498, 51705543 and 31530023). H.M. thanks the Interdisciplinary Graduate School (IGS) Research Scholarship from the Ageing Research Institute for Society and Education at Nanyang Technological University. The work was conducted in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF).
Author information
Authors and Affiliations
Contributions
C.C., X.X., F.S., W.Z., N.H.V. and R.E. were responsible for conceptualization. C.C., W.Z., N.H.V. and R.E. were responsible for funding acquisition. C.C. and R.E. were responsible for project administration. C.C., Y.C., S.A., A.M., V.M., H.M., E.D.R., G.H., X.X., F.S., W.Z. and R.E. were responsible for writing the original draft.C.C., Y.C., S.A., A.M., V.M., H.M., G.H., E.T., X.X., F.S., W.Z., N.H.V. and R.E. were responsible for reviewing and editing the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Table 1
Rights and permissions
About this article
Cite this article
Chiappini, C., Chen, Y., Aslanoglou, S. et al. Tutorial: using nanoneedles for intracellular delivery. Nat Protoc 16, 4539–4563 (2021). https://doi.org/10.1038/s41596-021-00600-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41596-021-00600-7
This article is cited by
-
Coupling of nanostraws with diverse physicochemical perforation strategies for intracellular DNA delivery
Journal of Nanobiotechnology (2024)
-
Single molecule delivery into living cells
Nature Communications (2024)
-
Electroactive nanoinjection platform for intracellular delivery and gene silencing
Journal of Nanobiotechnology (2023)
-
Nanotopographic micro-nano forces finely tune the conformation of macrophage mechanosensitive membrane protein integrin β2 to manipulate inflammatory responses
Nano Research (2023)
-
Role of actin cytoskeleton in cargo delivery mediated by vertically aligned silicon nanotubes
Journal of Nanobiotechnology (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.