Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Hierarchical imaging and computational analysis of three-dimensional vascular network architecture in the entire postnatal and adult mouse brain

Abstract

The formation of new blood vessels and the establishment of vascular networks are crucial during brain development, in the adult healthy brain, as well as in various diseases of the central nervous system. Here, we describe a step-by-step protocol for our recently developed method that enables hierarchical imaging and computational analysis of vascular networks in postnatal and adult mouse brains. The different stages of the procedure include resin-based vascular corrosion casting, scanning electron microscopy, synchrotron radiation and desktop microcomputed tomography imaging, and computational network analysis. Combining these methods enables detailed visualization and quantification of the 3D brain vasculature. Network features such as vascular volume fraction, branch point density, vessel diameter, length, tortuosity and directionality as well as extravascular distance can be obtained at any developmental stage from the early postnatal to the adult brain. This approach can be used to provide a detailed morphological atlas of the entire mouse brain vasculature at both the postnatal and the adult stage of development. Our protocol allows the characterization of brain vascular networks separately for capillaries and noncapillaries. The entire protocol, from mouse perfusion to vessel network analysis, takes ~10 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow chart, summary and time frame of the procedure.
Fig. 2: Intracardial resin perfusion and brain dissection for postnatal day 10 (P10) animals.
Fig. 3: The principles of (brain) vascular corrosion casting.
Fig. 4: The placement of the ROIs and process of computational 3D reconstruction.
Fig. 5: Global vascular network morphometry: increased vascular volume fraction in various regions of the adult (P60) WT versus postnatal (P10) WT mouse brain.
Fig. 6: Distinguishing between capillaries and noncapillaries.
Fig. 7: Local vascular network topology: increased vascular volume fraction of the adult (P60) WT versus postnatal (P10) WT cortex is mainly found at the capillary level.
Fig. 8: Local vascular network topology: visualization and quantification of vascular branch point diameter and vascular branch point density in various regions of the adult (P60) WT versus the postnatal (P10) WT mouse brain.
Fig. 9: Local vascular network topology: segment density, diameter and length of the adult (P60) WT versus the postnatal (P10) WT mouse brain.
Fig. 10: Local vascular network topology: segment tortuosity and segment volume of the adult (P60) WT versus the postnatal (P10) WT mouse brain.
Fig. 11: Local vascular network topology: extravascular distance is decreased in various regions of the adult (P60) WT versus the postnatal (P10) WT mouse brain.
Fig. 12: Global vascular network morphology: visualization of distinct patterns of vessel directionality in various brain regions of the adult (P60) WT and postnatal (P10) WT mouse brain.
Fig. 13: High-resolution SRµCT scan of the entire postnatal (P10) and adult (P60) mouse brain: visualization and quantification of various anatomical brain regions reveals increased vascular volume fractions in the P60 versus P10 mouse brain.
Fig. 14: Working model summarizing the differences in 3D vascular network architecture between adult (P60) WT and postnatal (P10) WT mice.

Similar content being viewed by others

Data Availability

The raw data underlying all graphical figures are provided in individual Excel (comma-separated value (‘.csv’)) files via Figshare (https://doi.org/10.6084/m9.figshare.13483119). For each panel of every figure, a .csv file is provided with the linked figure noted within both the file and the file name.

References

  1. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Wälchli, T. et al. Wiring the vascular network with neural cues: a CNS perspective. Neuron 87, 271–296 (2015).

    Article  PubMed  CAS  Google Scholar 

  4. Jain, R. K. & Carmeliet, P. SnapShot: tumor angiogenesis. Cell 149, 1408–1408.e1401 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Herbert, S. P. & Stainier, D. Y. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12, 551–564 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Quaegebeur, A., Lange, C. & Carmeliet, P. The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron 71, 406–424 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Burri, P. H., Hlushchuk, R. & Djonov, V. Intussusceptive angiogenesis: Its emergence, its characteristics, and its significance. Dev. Dyn. 231, 474–488 (2004).

    Article  PubMed  Google Scholar 

  8. Makanya, A. N., Hlushchuk, R. & Djonov, V. G. Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 12, 113–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Garcia-Gomez, P. & Valiente, M. Vascular co-option in brain metastasis. Angiogenesis https://doi.org/10.1007/s10456-019-09693-x (2019).

  10. Kuczynski, E. A., Vermeulen, P. B., Pezzella, F., Kerbel, R. S. & Reynolds, A. R. Vessel co-option in cancer. Nat. Rev. Clin. Oncol. 16, 469–493 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Angara, K., Borin, T. F. & Arbab, A. S. Vascular mimicry: a novel neovascularization mechanism driving anti-angiogenic therapy (AAT) resistance in glioblastoma. Transl. Oncol. 10, 650–660 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fernández-Cortés, M., Delgado-Bellido, D. & Oliver, F. J. Vasculogenic mimicry: become an endothelial cell “but not so much”. Front. Oncol. 9, 803–803 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ricci-Vitiani, L. et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468, 824–828 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, R. et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468, 829–833 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Cheng, L. et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153, 139–152 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, W. et al. Targeting glioma stem cell-derived pericytes disrupts the blood-tumor barrier and improves chemotherapeutic efficacy. Cell Stem Cell 21, 591–603.e594 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coelho-Santos, V. & Shih, A. Y. Postnatal development of cerebrovascular structure and the neurogliovascular unit. Wiley Interdiscip. Rev. Dev. Biol. 9, e363–e363 (2020).

    Article  PubMed  Google Scholar 

  18. Mink, J. W., Blumenschine, R. J. & Adams, D. B. Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 241, R203–R212 (1981).

    Article  CAS  Google Scholar 

  19. Begley, D. J. & Brightman, M. W. Structural and functional aspects of the blood-brain barrier. Prog. Drug Res. 61, 39–78 (2003).

    CAS  PubMed  Google Scholar 

  20. Zlokovic, B. V. & Apuzzo, M. L. Strategies to circumvent vascular barriers of the central nervous system. Neurosurgery 43, 877–878 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Cassot, F., Lauwers, F., Lorthois, S., Puwanarajah, P. & Duvernoy, H. Scaling laws for branching vessels of human cerebral cortex. Microcirculation 16, 331–344 (2009).

    Article  PubMed  Google Scholar 

  22. Tsai, P. S. et al. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. J. Neurosci. 29, 14553–14570 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blinder, P. et al. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat. Neurosci. 16, 889–897 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shih, A. Y. et al. Robust and fragile aspects of cortical blood flow in relation to the underlying angioarchitecture. Microcirculation 22, 204–218 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Harb, R., Whiteus, C., Freitas, C. & Grutzendler, J. In vivo imaging of cerebral microvascular plasticity from birth to death. J. Cereb. Blood Flow. Metab. 33, 146–156 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vallon, M., Chang, J., Zhang, H. & Kuo, C. J. Developmental and pathological angiogenesis in the central nervous system. Cell. Mol. Life Sci. 71, 3489–3506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wälchli, T. et al. Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain. Nat. Protoc. 10, 53–74 (2015).

    Article  PubMed  CAS  Google Scholar 

  29. Weller, R. O., Sharp, M. M., Christodoulides, M., Carare, R. O. & Møllgård, K. The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathol. 135, 363–385 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Hogan, K. A., Ambler, C. A., Chapman, D. L. & Bautch, V. L. The neural tube patterns vessels developmentally using the VEGF signaling pathway. Development 131, 1503–1513 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Paredes, I., Himmels, P. & Ruiz de Almodovar, C. Neurovascular communication during CNS development. Dev. Cell 45, 10–32 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Mancuso, M. R., Kuhnert, F. & Kuo, C. J. Developmental angiogenesis of the central nervous system. Lymphat. Res. Biol. 6, 173–180 (2008).

    Article  PubMed  Google Scholar 

  33. Fantin, A., Vieira, J. M., Plein, A., Maden, C. H. & Ruhrberg, C. The embryonic mouse hindbrain as a qualitative and quantitative model for studying the molecular and cellular mechanisms of angiogenesis. Nat. Protoc. 8, 418–429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vasudevan, A., Long, J. E., Crandall, J. E., Rubenstein, J. L. & Bhide, P. G. Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat. Neurosci. 11, 429–439 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fantin, A. et al. NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood 121, 2352–2362 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zeller, K., Vogel, J. & Kuschinsky, W. Postnatal distribution of Glut1 glucose transporter and relative capillary density in blood-brain barrier structures and circumventricular organs during development. Brain Res. Dev. Brain Res. 91, 200–208 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Wälchli, T. et al. Nogo-A is a negative regulator of CNS angiogenesis. Proc. Natl Acad. Sci. USA 110, E1943–E1952 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wälchli, T. et al. Nogo-A regulates vascular network architecture in the postnatal brain. J. Cereb. Blood Flow. Metab. 37, 614–631 (2017).

    Article  PubMed  Google Scholar 

  40. Whiteus, C., Freitas, C. & Grutzendler, J. Perturbed neural activity disrupts cerebral angiogenesis during a postnatal critical period. Nature 505, 407–411 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Sweeney, M. D., Ayyadurai, S. & Zlokovic, B. V. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat. Neurosci. 19, 771–783 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Muoio, V., Persson, P. B. & Sendeski, M. M. The neurovascular unit—concept review. Acta Physiol. 210, 790–798 (2014).

    Article  CAS  Google Scholar 

  43. Eichmann, A. & Thomas, J. L. Molecular parallels between neural and vascular development. Cold Spring Harb. Perspect. Med. 3, a006551 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yu, P. et al. FGF-dependent metabolic control of vascular development. Nature 545, 224–228 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, X., Sun, X. & Carmeliet, P. Hallmarks of endothelial cell metabolism in health and disease. Cell Metab. 30, 414–433 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Andrae, J., Gallini, R. & Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 22, 1276–1312 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jih, Y. J. et al. Distinct regulation of genes by bFGF and VEGF-A in endothelial cells. Angiogenesis 4, 313–321 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Dong, J. et al. Glioma stem cells involved in tumor tissue remodeling in a xenograft model. J. Neurosurg. 113, 249–260 (2010).

    Article  PubMed  Google Scholar 

  49. Lawler, J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J. Cell Mol. Med. 6, 1–12 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lawler, P. R. & Lawler, J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb. Perspect. Med. 2, a006627 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. O’Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    Article  PubMed  Google Scholar 

  52. Dhanabal, M. et al. Angioarrestin: an antiangiogenic protein with tumor-inhibiting properties. Cancer Res. 62, 3834–3841 (2002).

    CAS  PubMed  Google Scholar 

  53. Lu, X. et al. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432, 179–186 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Sakurai, A., Doçi, C. L. & Gutkind, J. S. Semaphorin signaling in angiogenesis, lymphangiogenesis and cancer. Cell Res. 22, 23–32 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Eilken, H. M. & Adams, R. H. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr. Opin. Cell Biol. 22, 617–625 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Strilic, B. et al. The molecular basis of vascular lumen formation in the developing mouse aorta. Dev. Cell 17, 505–515 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Pitulescu, M. E. et al. Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat. Cell Biol. 19, 915–927 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Lammert, E. & Axnick, J. Vascular lumen formation. Cold Spring Harb. Perspect. Med. 2, a006619 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Tung, J. J., Tattersall, I. W. & Kitajewski, J. Tips, stalks, tubes: Notch-mediated cell fate determination and mechanisms of tubulogenesis during angiogenesis. Cold Spring Harb. Perspect. Med. 2, a006601 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wacker, A. & Gerhardt, H. Endothelial development taking shape. Curr. Opin. Cell Biol. 23, 676–685 (2011).

    CAS  PubMed  Google Scholar 

  61. Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136, 839–851 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dela Paz, N. G., Melchior, B. & Frangos, J. A. Shear stress induces Gα(q/11) activation independently of G protein-coupled receptor activation in endothelial cells. Am. J. Physiol. Cell Physiol. 312, C428–C437 (2017).

    Article  Google Scholar 

  63. Takuwa, N. et al. Tumor-suppressive sphingosine-1-phosphate receptor-2 counteracting tumor-promoting sphingosine-1-phosphate receptor-1 and sphingosine kinase 1—Jekyll Hidden behind Hyde. Am. J. Cancer Res. 1, 460–481 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mendelson, K., Evans, T. & Hla, T. Sphingosine 1-phosphate signalling. Development 141, 5–9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gaengel, K. et al. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev. Cell 23, 587–599 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Jin, Z. G. et al. Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ. Res. 93, 354–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Nigro, P., Abe, J. & Berk, B. C. Flow shear stress and atherosclerosis: a matter of site specificity. Antioxid. Redox Signal 15, 1405–1414 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baeyens, N. et al. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J. Cell Biol. 214, 807–816 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Franco, C. A. et al. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling. eLife 5, e07727–e07727 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Pries, A. R. & Secomb, T. W. Modeling structural adaptation of microcirculation. Microcirculation 15, 753–764 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pries, A. R., Secomb, T. W. & Gaehtgens, P. Structural adaptation and stability of microvascular networks: theory and simulations. Am. J. Physiol. 275, H349–H360 (1998).

    CAS  PubMed  Google Scholar 

  72. Hjelmeland, A. B., Lathia, J. D., Sathornsumetee, S. & Rich, J. N. Twisted tango: brain tumor neurovascular interactions. Nat. Neurosci. 14, 1375–1381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Carmeliet, P., De Smet, F., Loges, S. & Mazzone, M. Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way. Nat. Rev. Clin. Oncol. 6, 315–326 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Frahm, K. A., Nash, C. P. & Tobet, S. A. Endocan immunoreactivity in the mouse brain: method for identifying nonfunctional blood vessels. J. Immunol. Methods 398–399, 27–32 (2013).

    Article  PubMed  CAS  Google Scholar 

  75. Geudens, I. & Gerhardt, H. Coordinating cell behaviour during blood vessel formation. Development 138, 4569–4583 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Blanco, R. & Gerhardt, H. VEGF and Notch in tip and stalk cell selection. Cold Spring Harb. Perspect. Med. 3, a006569 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Phng, L. K. & Gerhardt, H. Angiogenesis: a team effort coordinated by notch. Dev. Cell 16, 196–208 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Noguera-Troise, I. et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444, 1032–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Thurston, G., Noguera-Troise, I. & Yancopoulos, G. D. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat. Rev. Cancer 7, 327–331 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Yan, M. et al. Chronic DLL4 blockade induces vascular neoplasms. Nature 463, E6–E7 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Lobov, I. B. et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc. Natl Acad. Sci. USA. 104, 3219–3224 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444, 1083–1087 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Gest, T. R. & Carron, M. A. Embryonic origin of the caudal mesenteric artery in the mouse. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 271, 192–201 (2003).

    Article  PubMed  Google Scholar 

  84. Adamson, S. L. et al. Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev. Biol. 250, 358–373 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Iwagaki, T., Suzuki, T. & Nakashima, T. Development and regression of cochlear blood vessels in fetal and newborn mice. Hear. Res. 145, 75–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Carraro, M. & Harrison, R. V. Degeneration of stria vascularis in age-related hearing loss; a corrosion cast study in a mouse model. Acta Otolaryngol. 136, 385–390 (2016).

    Article  PubMed  Google Scholar 

  87. Carraro, M., Park, A. H. & Harrison, R. V. Partial corrosion casting to assess cochlear vasculature in mouse models of presbycusis and CMV infection. Hear. Res. 332, 95–103 (2016).

    Article  PubMed  Google Scholar 

  88. Carraro, M. et al. Cytomegalovirus (CMV) infection causes degeneration of cochlear vasculature and hearing loss in a mouse model. J. Assoc. Res. Otolaryngol. 18, 263–273 (2017).

    Article  PubMed  Google Scholar 

  89. Hossler, F. E., Lametschwandtner, A., Kao, R. & Finsterbusch, F. Microvascular architecture of mouse urinary bladder described with vascular corrosion casting, light microscopy, SEM, and TEM. Microsc. Microanal. 19, 1428–1435 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Peão, M. N., Aguas, A. P., de Sá, C. M. & Grande, N. R. Neoformation of blood vessels in association with rat lung fibrosis induced by bleomycin. Anat. Rec. 238, 57–67 (1994).

    Article  PubMed  Google Scholar 

  91. Peáo, M. N., Aguas, A. P., de Sá, C. M. & Grande, N. R. Identification of vascular sphincters at the junction between alveolar capillaries and pulmonary venules of the mouse lung. Anat. Rec. 241, 383–390 (1995).

    Article  PubMed  Google Scholar 

  92. Ackermann, M. et al. Effects of nintedanib on the microvascular architecture in a lung fibrosis model. Angiogenesis 20, 359–372 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gibney, B. C. et al. Structural and functional evidence for the scaffolding effect of alveolar blood vessels. Exp. Lung Res. 43, 337–346 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Dahl, E. The fine structure of intracerebral vessels. Z. Zellforsch. Mikrosk. Anat. 145, 577–586 (1973).

    Article  CAS  PubMed  Google Scholar 

  95. Levesque, M. J., Cornhill, J. F. & Nerem, R. M. Vascular casting. A new method for the study of the arterial endothelium. Atherosclerosis 34, 457–467 (1979).

    Article  CAS  PubMed  Google Scholar 

  96. Duvernoy, H. M., Delon, S. & Vannson, J. L. Cortical blood vessels of the human brain. Brain Res. Bull. 7, 519–579 (1981).

    Article  CAS  PubMed  Google Scholar 

  97. Reina-De La Torre, F., Rodriguez-Baeza, A. & Sahuquillo-Barris, J. Morphological characteristics and distribution pattern of the arterial vessels in human cerebral cortex: a scanning electron microscope study. Anat. Rec. 251, 87–96 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Zagórska-Swiezy, K., Litwin, J. A., Gorczyca, J., Pityński, K. & Miodoński, A. J. Arterial supply and venous drainage of the choroid plexus of the human lateral ventricle in the prenatal period as revealed by vascular corrosion casts and SEM. Folia Morphol. (Warsz.) 67, 209–213 (2008).

    Google Scholar 

  99. Heinzer, S. et al. Hierarchical microimaging for multiscale analysis of large vascular networks. Neuroimage 32, 626–636 (2006).

    Article  PubMed  Google Scholar 

  100. Krucker, T., Lang, A. & Meyer, E. P. New polyurethane-based material for vascular corrosion casting with improved physical and imaging characteristics. Microsc. Res. Tech. 69, 138–147 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Sangiorgi, S. et al. Arterial and microvascular supply of cerebral hemispheres in the nude mouse revealed using corrosion casting and scanning electron microscopy. J. Anat. 232, 739–746 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Quintana, D. D. et al. The cerebral angiome: high resolution MicroCT imaging of the whole brain cerebrovasculature in female and male mice. NeuroImage 202, 116109 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Heinzer, S. et al. Novel three-dimensional analysis tool for vascular trees indicates complete micro-networks, not single capillaries, as the angiogenic endpoint in mice overexpressing human VEGF(165) in the brain. NeuroImage 39, 1549–1558 (2008).

    Article  PubMed  Google Scholar 

  104. Krucker, T., Schuler, A., Meyer, E. P., Staufenbiel, M. & Beckmann, N. Magnetic resonance angiography and vascular corrosion casting as tools in biomedical research: application to transgenic mice modeling Alzheimer’s disease. Neurol. Res. 26, 507–516 (2004).

    Article  PubMed  Google Scholar 

  105. Meyer, E. P., Ulmann-Schuler, A., Staufenbiel, M. & Krucker, T. Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer’s disease. Proc. Natl Acad. Sci. USA. 105, 3587–3592 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Walker, E. J., Shen, F., Young, W. L. & Su, H. Cerebrovascular casting of the adult mouse for 3D imaging and morphological analysis. J. Vis. Exp. https://doi.org/10.3791/2958 (2011).

  107. Walker, E. J. et al. Arteriovenous malformation in the adult mouse brain resembling the human disease. Ann. Neurol. 69, 954–962 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Risser, L. et al. From homogeneous to fractal normal and tumorous microvascular networks in the brain. J. Cereb. Blood Flow. Metab. 27, 293–303 (2007).

    Article  PubMed  Google Scholar 

  109. Sangiorgi, S. et al. Early-stage microvascular alterations of a new model of controlled cortical traumatic brain injury: 3D morphological analysis using scanning electron microscopy and corrosion casting. J. Neurosurg. 118, 763 (2013).

    Article  PubMed  Google Scholar 

  110. Ohtake, M., Morino, S., Kaidoh, T. & Inoué, T. Three-dimensional structural changes in cerebral microvessels after transient focal cerebral ischemia in rats: scanning electron microscopic study of corrosion casts. Neuropathology 24, 219–227 (2004).

    Article  PubMed  Google Scholar 

  111. Rodríguez-Baeza, A., Reina-de la Torre, F., Poca, A., Martí, M. & Garnacho, A. Morphological features in human cortical brain microvessels after head injury: a three-dimensional and immunocytochemical study. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 273, 583–593 (2003).

    Article  PubMed  Google Scholar 

  112. Zhang, F., Wen, Y. & Guo, X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum. Mol. Genet. 23, R40–R46 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Gerhardt, H. et al. Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev. Dyn. 231, 503–509 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Provost, J. et al. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62, 1467–1472 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Demene, C. et al. 4D microvascular imaging based on ultrafast Doppler tomography. NeuroImage 127, 472–483 (2016).

    Article  PubMed  Google Scholar 

  117. Pathak, A. P., Kim, E., Zhang, J. & Jones, M. V. Three-dimensional imaging of the mouse neurovasculature with magnetic resonance microscopy. PLoS One 6, e22643–e22643 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hartung, M. P., Grist, T. M. & François, C. J. Magnetic resonance angiography: current status and future directions. J. Cardiovasc. Magn. Reson. 13, 19–19 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kelch, I. D. et al. Organ-wide 3D-imaging and topological analysis of the continuous microvascular network in a murine lymph node. Sci. Rep. 5, 16534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Marien, K. M. et al. Development and validation of a histological method to measure microvessel density in whole-slide images of cancer tissue. PLoS One 11, e0161496–e0161496 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Bukenya, F., Nerissa, C., Serres, S., Pardon, M. C. & Bai, L. An automated method for segmentation and quantification of blood vessels in histology images. Microvasc. Res. 128, 103928 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Oren, R. et al. Whole organ blood and lymphatic vessels imaging (WOBLI). Sci. Rep. 8, 1412–1412 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Kennel, P., Teyssedre, L., Colombelli, J. & Plouraboué, F. Toward quantitative three-dimensional microvascular networks segmentation with multiview light-sheet fluorescence microscopy. J. Biomed. Opt. 23, 1–14 (2018).

    Article  PubMed  Google Scholar 

  124. Di Giovanna, A. P. et al. Tailored sample mounting for light-sheet fluorescence microscopy of clarified specimens by polydimethylsiloxane casting. Front. Neuroanat. 13, 35–35 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  125. Lugo-Hernandez, E. et al. 3D visualization and quantification of microvessels in the whole ischemic mouse brain using solvent-based clearing and light sheet microscopy. J. Cereb. Blood Flow. Metab. 37, 3355–3367 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Todorov, M. I. et al. Machine learning analysis of whole mouse brain vasculature. Nat. Methods 17, 442–449 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kirst, C. et al. Mapping the fine-scale organization and plasticity of the brain vasculature. Cell 180, 780–795.e725 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Susaki, E. A. & Ueda, H. R. Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem. Biol. 23, 137–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Zagorchev, L. et al. Micro computed tomography for vascular exploration. J. Angiogenes. Res. 2, 7 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Blery, P. et al. Vascular imaging with contrast agent in hard and soft tissues using microcomputed-tomography. J. Microsc. 262, 40–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Starosolski, Z. et al. Ultra high-resolution in vivo computed tomography imaging of mouse cerebrovasculature using a long circulating blood pool contrast agent. Sci. Rep. 5, 10178 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Beckmann, N. et al. Age-dependent cerebrovascular abnormalities and blood flow disturbances in APP23 mice modeling Alzheimer’s disease. J. Neurosci. 23, 8453–8459 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gore, A. V., Monzo, K., Cha, Y. R., Pan, W. & Weinstein, B. M. Vascular development in the zebrafish. Cold Spring Harb. Perspect. Med. 2, a006684 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Dorr, A., Sled, J. G. & Kabani, N. Three-dimensional cerebral vasculature of the CBA mouse brain: a magnetic resonance imaging and micro computed tomography study. NeuroImage 35, 1409–1423 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Figueiredo, G., Boll, H., Kramer, M., Groden, C. & Brockmann, M. A. In vivo X-ray digital subtraction and CT angiography of the murine cerebrovasculature using an intra-arterial route of contrast injection. Am. J. Neuroradiol. 33, 1702 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ben-Zvi, A. et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509, 507–511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779.e720 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Goveia, J. et al. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell 37, 21–36.e13 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Pitulescu, M. E., Schmidt, I., Benedito, R. & Adams, R. H. Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice. Nat. Protoc. 5, 1518–1534 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Sawamiphak, S., Ritter, M. & Acker-Palmer, A. Preparation of retinal explant cultures to study ex vivo tip endothelial cell responses. Nat. Protoc. 5, 1659–1665 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Willner, M. et al. Quantitative three-dimensional imaging of lipid, protein, and water contents via X-ray phase-contrast tomography. PLoS One 11, e0151889 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Moyon, D., Pardanaud, L., Yuan, L., Bréant, C. & Eichmann, A. Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development 128, 3359–3370 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Villa, N. et al. Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech. Dev. 108, 161–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Seki, T., Yun, J. & Oh, S. P. Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. Circ. Res. 93, 682–689 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Cui, X. et al. Venous endothelial marker COUP-TFII regulates the distinct pathologic potentials of adult arteries and veins. Sci. Rep. 5, 16193 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. You, L. R. et al. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435, 98–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Wang, H. U., Chen, Z. F. & Anderson, D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998).

    Article  CAS  PubMed  Google Scholar 

  149. Malcontenti-Wilson, C., Chan, L., Nikfarjam, M., Muralidharan, V. & Christophi, C. Vascular targeting agent Oxi4503 inhibits tumor growth in a colorectal liver metastases model. J. Gastroenterol. Hepatol. 23, e96–e104 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Kaidoh, T., Yasugi, T. & Uehara, Y. The microvasculature of the 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary tumour. Virchows Arch. A 418, 111–117 (1991).

    Article  CAS  Google Scholar 

  151. Chakhoyan, A. et al. Validation of vessel size imaging (VSI) in high-grade human gliomas using magnetic resonance imaging, image-guided biopsies, and quantitative immunohistochemistry. Sci. Rep. 9, 2846 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Burrell, J. S. et al. MRI measurements of vessel calibre in tumour xenografts: Comparison with vascular corrosion casting. Microvasc. Res. 84, 323–329 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  153. O’Connor, J. P. et al. Quantifying antivascular effects of monoclonal antibodies to vascular endothelial growth factor: insights from imaging. Clin. Cancer Res. 15, 6674–6682 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Miyake, T., Murakami, T. & Ohtsuka, A. Incomplete vascular casting for a scanning electron microscope study of the microcirculatory patterns in the rat pancreas. Arch. Histol. Cytol. 55, 397–406 (1992).

    Article  CAS  PubMed  Google Scholar 

  155. Christoffersonm, R. H. & Nilsson, B. O. Microvascular corrosion casting with analysis in the scanning electron microscope. Scanning 10, 43–63 (1988).

    Article  Google Scholar 

  156. Paganin, D., Mayo, S. C., Gureyev, T. E., Miller, P. R. & Wilkins, S. W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Marone, F. & Stampanoni, M. Regridding reconstruction algorithm for real-time tomographic imaging. J. Synchrotron Radiat. 19, 1029–1037 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Miettinen, A., Oikonomidis, I. V., Bonnin, A. & Stampanoni, M. NRStitcher: non-rigid stitching of terapixel-scale volumetric images. Bioinformatics 35, 5290–5297 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979).

    Article  Google Scholar 

  160. Huang, L.-K. & Wang, M.-J. J. Image thresholding by minimizing the measures of fuzziness. Pattern Recogn. 28, 41–51 (1995).

    Article  Google Scholar 

  161. Prewitt, J. M. S. & Mendelsohn, M. L. The analysis of cell images. Ann. NY Acad. Sci. 128, 1035–1053 (1966).

    Article  CAS  PubMed  Google Scholar 

  162. Li, C. H. & Tam, P. K. S. An iterative algorithm for minimum cross entropy thresholding. Pattern Recogn. Lett. 19, 771–776 (1998).

    Article  Google Scholar 

  163. Lee, T. C., Kashyap, R. L. & Chu, C. N. Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP Graph. Models Image Process. 56, 462–478 (1994).

    Article  Google Scholar 

  164. Calvin, R., Maurer, J., Qi, R. & Raghavan, V. A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25, 265–270 (2003).

    Article  Google Scholar 

  165. Suhadolnik, A., Petrišič, J. & Kosel, F. An anchored discrete convolution algorithm for measuring length in digital images. Measurement 42, 1112–1117 (2009).

    Article  Google Scholar 

  166. Tukey, J. W. Exploratory Data Analysis (Addison-Wesley, 1977).

  167. ACSF for LSPS. Cold Spring Harbor Protocols https://doi.org/10.1101/pdb.rec071944 (2012).

  168. Heinzer, S. et al. Computer-based analysis of microvascular alterations in a mouse model for Alzheimer’s disease. Proc. SPIE 6511, 65114 (2007).

    Google Scholar 

  169. Rust, R. et al. Nogo-A targeted therapy promotes vascular repair and functional recovery following stroke. Proc. Natl Acad. Sci. 116, 14270 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Joly, S., Dejda, A., Rodriguez, L., Sapieha, P. & Pernet, V. Nogo-A inhibits vascular regeneration in ischemic retinopathy. Glia 66, 2079–2093 (2018).

    Article  PubMed  Google Scholar 

  171. Seiler, S., Di Santo, S. & Widmer, H. R. Nogo-A neutralization improves graft function in a rat model of Parkinson’s disease. Front. Cell Neurosci. 10, 87 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Weber, B., Keller, A. L., Reichold, J. & Logothetis, N. K. The microvascular system of the striate and extrastriate visual cortex of the macaque. Cereb. Cortex 18, 2318–2330 (2008).

    Article  PubMed  Google Scholar 

  173. Fenrich, K. K., Zhao, E. Y., Wei, Y., Garg, A. & Rose, P. K. Isolating specific cell and tissue compartments from 3D images for quantitative regional distribution analysis using novel computer algorithms. J. Neurosci. Methods 226, 42–56 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. De Bock, M. Schwab, M. Ghobrial and J. Zhang for help with the animal perfusions, S. Eichelbaum for help with the computational analysis and 3D visualizations (http://www.nemtics.com), and N. Chu Ji for help with the illustrations. T.W. was supported by the OPO Foundation, the Swiss Cancer Research foundation (KFS-3880-02-2016-R, KFS-4758-02-2019-R), the Stiftung zur Krebsbekämpfung, the Kurt und Senta Herrmann Foundation, Forschungskredit of the University of Zurich, the Zurich Cancer League, the Theodor und Ida Herzog Egli Foundation, the Novartis Foundation for Medical-Biological Research, and the HOPE Foundation. P.C. was supported by long-term structural Methusalem funding by the Flemish Government (14/08), and a European Research Council (ERC) Advanced Research Grant (EU-ERC269073). J.V. was supported by the Swiss National Science Foundation (no. 310000 120321/1). All the animal experiments were conducted in J.V.’s laboratory and were approved by the Veterinary Office of the Canton of Zurich.

Author information

Authors and Affiliations

Authors

Contributions

T.W. had the idea for the study, designed the experiments, wrote the manuscript and made the figures. T.W., A.U.S., E.P.M. and C.H. conducted the experiments. T.W., J.V., A.M. and J.B. analyzed the data. T.W. wrote the manuscript, and J.B. helped editing the manuscript and figures. R.W. helped with the animal experiments and gave critical inputs to the manuscript. A.M., A.U.S., T.K., K.D.B., P.C., J.V. and M.S. gave critical inputs to the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Thomas Wälchli.

Ethics declarations

Competing interests

T.K. is an employee of the Novartis Institutes for BioMedical Research, Inc., and E.P.M is co-founder of vasQtec.

Additional information

Peer review information Nature Protocols thanks Hongbin Lu, Guoyuan Yang and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Heinzer, S. et al. Neuroimage 39, 1549–1558 (2008): https://doi.org/10.1016/j.neuroimage.2007.10.054

Meyer, E. P. et al. Proc. Natl Acad. Sci. USA 105, 3587–3592 (2008): https://doi.org/10.1073/pnas.0709788105

Wälchli, T. et al. J. Cereb. Blood Flow Metab. 37, 614–631 (2017): https://doi.org/10.1177/0271678X16675182

Extended data

Extended Data Fig. 1 Intracardial resin perfusion and brain dissection for adult (P60) animals.

The main steps of resin perfusion and brain dissection are shown as photographs for the perfusion and brain dissection of adult (P60) mice. a-c Fixation (a), surgical opening (b,c) and site of needle insertion (c) for intracardial perfusion (via the left ventricle) with 10–20 ml ACSF containing 25,000 U/L Heparin, followed by 4% PFA in PBS, and then by the polymer resin PU4ii (vasQtec, Zürich, Switzerland), all infused at the same rate (8 ml/min and 100-120 mmHg) in an adult (P60) mouse (see also Supplementary Video 1). d Successful perfusion is indicated by a bluish aspect of the animal, which can be easiest observed at the paws (white arrow) or the snout (white arrowhead). e,f Resin cast of a P60 animal after soft tissue maceration, and before (e) and after (f) decalcification of bone structures. f-h The cerebral vasculature is sharply dissected from the extracranial vessels resulting in the isolated brain vascular corrosion cast of the P60 mouse brain (g,h). Scale bars, 10 mm (e-h).

Extended Data Fig. 2 Validation of vascular corrosion casting in postnatal (P10) and adult (P60) mice using light microscopy (LM) and SEM.

a-f Quality control of the vascular corrosion casts of P10 and P60 WT mice by visual inspection by LM (a), and by SEM (b-f). a Light microscopy image of the entire brain vasculature of the P60 WT mice (gold sputtered for SEM). b SEM image of the entire brain vascular corrosion cast illustrating the dense vascular network including blood vessels of all sizes with recognizable vascular anatomy. c-f The entire brain was uniformly filled with resin and the lumen of the vessels imprinted in the casting material with the finest details. e The capillary network in the cortex is well defined and devoid of interruptions. f Note the elongated cellular and nuclear imprints on the large vessel that are also typical for good-quality vascular corrosion casts in adult mice105. Scale bars, 4 mm (a); 4 mm (b); 50 μm (c); 50 μm (d), 100 μm (e), 100 μm (f). a,d-f reproduced with permission from ref. 39. b reproduced with permission from ref. 100.

Extended Data Fig. 3 Global vascular network morphometry: increased vascular volume fraction in various regions of the adult (P60) Nogo-A-/- versus postnatal (P10) Nogo-A-/- mouse brain.

Genetic deletion of Nogo-A leads to increased vascular volume fraction in various regions of the postnatal mouse brain. a-c Computational 3D reconstructions of μCT scans of vascular networks of P10 and P60 Nogo-A-/- mice displayed with color-coded vessel thickness. The increased vessel density in the Nogo-A-/- animals, as compared to the WT animals (Fig. 5) in the cortices (a), hippocampi (b) and superior colliculi (c) is obvious. Color bar indicates vessel radius. The boxed areas are enlarged at right. (n = 11 for P10 Nogo-A-/-; n = 13 for P60 Nogo-A-/- animals; and in average three ROIs per animal and brain region were used). Scale bars: 100 µm (a-c overviews); 50 µm (a-c zooms).

Extended Data Fig. 4 Local vascular network topology: increased vascular volume fraction of the adult (P60) Nogo-A-/- versus postnatal (P10) Nogo-A-/- mouse brain mainly found at the capillary level.

Genetic deletion of Nogo-A leads to increased vascular volume fraction in various regions of the P10 mouse brain. a Computational 3D reconstruction of μCT images of vascular networks of P10 and P60 Nogo-A-/- mice separated for noncapillaries (magenta) and capillaries (green). The increased density of capillaries (green) in the P60 and P10 Nogo-A-/- samples is evident when compared to the WT animals (Fig. 7), noncapillaries (magenta) appear largely unchanged. The boxed areas are enlarged at right (a-c). Scale bars: 100 mm (a-c, overviews); 50 mm (a-c, zooms).

Extended Data Fig. 5 Local vascular network topology: visualization and quantification of vascular branch point diameter and vascular branch point density in the hippocampus of the adult (P60) WT versus the postnatal (P10) WT mouse brain.

The vascular branch point diameter and vascular branch point density are significantly increased in the P60 as compared to the P10 mouse brain hippocampus. a Scheme depicting the definition of vascular branch points (see Fig. 8b for details) b Histogram showing the distribution of branch point diameter plotted against the branch point density in P10 WT and P60 WT animals. P60 WT animals show an increased branch point density as compared to P10 WT (bin width = 0.38 μm; number of bins = 40). Black dashed line marks the separation between capillaries (< 7 μm) and non-capillaries (≥7 μm), as defined in Fig. 6. c,d Computational 3D reconstructions of μCT images of vascular networks in the hippocampi of P10 WT and P60 WT mice with visualizations of the vessel branch points displayed as dots, separated for noncapillaries (magenta) and capillaries (green). The higher density of branch points in the P60 WT hippocampi especially at the capillary level (green) is obvious, a slight increase of branch point density can be observed at the noncapillary level (magenta). The boxed areas are enlarged at right. eg Quantitative analysis of the branch point density for all vessels (e), noncapillaries (f), and capillaries (g) in P10 WT and P60 WT hippocampi by local morphometry analysis. The significant increase of the branch point density for all vessels in the P60 WT animals (e) was mainly due to a significant increase at the level of capillaries (g) and in part due to a significant increase at the level of noncapillaries (f). In average, n = 2-7 animals were used for the hippocampi and in average three ROIs per animal and brain region were used. All data are shown as mean distributions where the open dot represents the mean. Boxplots indicate the 25% to 75% quartiles of the data. The shaded blue and red areas indicate the SD. *P < 0.05, **P < 0.01, ***P < 0.001. Scale bars: 100 µm (c-d overviews); 50 µm (c-d zooms).

Extended Data Fig. 6 Local vascular network topology: visualization and quantification of vascular branch point diameter and vascular branch point density in the superior colliculus of the adult (P60) WT versus the postnatal (P10) WT mouse brain.

The vascular branch point diameter and vascular branch point density are significantly increased in the P60 as compared to the P10 mouse brain superior colliculus. a Scheme depicting the definition of degree 3 and 4 vascular branch point (see Fig. 8b for details). b Histogram showing the distribution of branch point diameter plotted against the branch point density in P10 WT and P60 WT animals. P60 WT animals show an increased branch point density as compared to P10 WT mice mainly at the capillary level (bin width = 0.38; number of bins = 40). Black dashed line marks the separation between capillaries (< 7 μm) and noncapillaries (≥7 μm), as defined in Fig. 6. c,d Computational 3D reconstructions of μCT images of vascular networks of the superior colliculi of P10 WT and P60 WT mice with visualizations of the vessel branch points displayed as dots, separately for noncapillaries (magenta) and capillaries (green). The higher density of branch points in the P60 WT superior colliculi especially at the capillary level (green) is obvious, a slight increase of branch point density can be observed at the noncapillary level (magenta). The boxed areas are enlarged at right. eg Quantitative analysis of the branch point density for all vessels (e), noncapillaries (f), and capillaries (g) in P10 WT and P60 WT superior colliculi by local morphometry analysis. The significant increase of the branch point density for all vessels in the P60 WT animals (e) was mainly due to a significant increase at the level of capillaries (g) and in part due to a significant increase at the level of noncapillaries (f). In average, n = 2-4 animals were used for the superior colliculus; and in average three ROIs per animal and brain region were used. All data are shown as mean distributions where the open dot represents the mean. Boxplots indicate the 25% to 75% quartiles of the data. The shaded blue and red areas indicate the SD. *P < 0.05, **P < 0.01, ***P < 0.001. Scale bars: 100 μm (c,d, overviews); 50 μm (c,d, zooms).

Extended Data Fig. 7 Resin PU4ii vascular corrosion casting combined with immunofluorescence.

Visualization by fluorescence light microscopy of the brain vasculature after the addition of fluorescent pigments to the PU4ii resin solution in the P60 mouse brains with preserved/non-macerated soft tissue (a-f), co-labeled with red fluorescent myelin stainings (g-j). Overviews (a,b,d,e) and coronal cortical sections (c,f) of P60 mouse brains with yellow/green (a,b,c) and UV-blue (d,e,f) fluorescent dyes (vasQtec) added to the PU4ii resin showing the brain vasculature; overviews: dorsal overviews (a,d), ventral overviews (b,e), coronal sections (c,f). The selection of the brain regions analyzed here has been done on coronal sections in the structures selected using the Allen Mouse Brain Atlas. c,f,g-j Fluorescence light microscopy overviews of multiple brain regions in 150 μm coronal sections of a P60 mouse brain perfused with either yellow/green- (c,h-j) or UV-blue (f,g) fluorescent pigments added to the PU4ii resin solution, showing the cortical layers and part of the hippocampus (c,f). Fluorescence light microscopy of coronal sections in which the preserved/non-macerated soft tissue was labeled with a red fluorescent myelin stain (FluoroMyelin Red, Molecular Probes Inc) to visualize the corpus callosum and other highly myelinated brain structures (red). Scale bars, 1 mm (a,b,d,e); 500 μm (c,d,g-j). Excitation/emission of the yellow/green pigments at 450 nm/550 nm, excitation/emission of the UV-blue fluorescent pigment at 375 nm/430 nm.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21.

Reporting Summary

Supplementary Video 1

Intracardial resin perfusion of a postnatal (P10) wildtype mouse. This video shows the intracardial resin perfusion of a postnatal (P10) wildtype mouse pub. All steps are precisely explained in the Procedure.

Supplementary Video 2

Three-dimensional animation of a reconstructed SRμCT scan of the entire vascular brain corrosion cast of an adult (P60) wildtype mouse. This animation shows a reconstructed SRμCT of an entire brain vascular corrosion cast of an adult (P60) wildtype animal. Five anatomical regions (cortex, hippocampus, superior colliculus, thalamus and cerebellum) were zoomed into with high resolution. Artificial coloring illustrates the vessel radius and the division between capillaries (vessel diameter <7 μm) and noncapillaries (vessel diameter ≥7 μm).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wälchli, T., Bisschop, J., Miettinen, A. et al. Hierarchical imaging and computational analysis of three-dimensional vascular network architecture in the entire postnatal and adult mouse brain. Nat Protoc 16, 4564–4610 (2021). https://doi.org/10.1038/s41596-021-00587-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00587-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing