Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Large-scale preparation of fluorescence multiplex host cell reactivation (FM-HCR) reporters

Abstract

Repair of DNA damage is a critical survival mechanism that affects susceptibility to various human diseases and represents a key target for cancer therapy. A major barrier to applying this knowledge in research and clinical translation has been the lack of efficient, quantitative functional assays for measuring DNA repair capacity in living primary cells. To overcome this barrier, we recently developed a technology termed ‘fluorescence multiplex host cell reactivation’ (FM-HCR). We describe a method for using standard molecular biology techniques to generate large quantities of FM-HCR reporter plasmids containing site-specific DNA lesions and using these reporters to assess DNA repair capacity in at least six major DNA repair pathways in live cells. We improve upon previous methodologies by (i) providing a universal workflow for generating reporter plasmids, (ii) improving yield and purity to enable large-scale studies that demand milligram quantities and (iii) reducing preparation time >ten-fold.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of FM-HCR workflow.
Fig. 2: Schematic representation of using transcriptional mutagenesis as a basis for FM-HCR reporter plasmids.
Fig. 3: Schematic representation of the FM-HCR reporter preparation protocol and gel electrophoretic analysis of intermediates and products.
Fig. 4: Gating scheme for identifying single cells and representative scatter plots of samples requiring compensation.
Fig. 5: Scheme for setting compensation in a four-color experiment.
Fig. 6: Gating scheme for excluding false-positive fluorescent events in FM-HCR experiments.
Fig. 7: Representative four-color FM-HCR experiment with three FM-HCR reporters.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data supporting the approach described in this protocol are available from the corresponding authors upon reasonable request. Starting plasmids will be deposited in Adgene. Small amounts of prepared FM-HCR reporter plasmids can be shared for pilot and feasibility studies upon reasonable request.

References

  1. Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2–9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lans, H., Hoeijmakers, J. H. J., Vermeulen, W. & Marteijn, J. A. The DNA damage response to transcription stress. Nat. Rev. Mol. Cell Biol. 20, 766–784 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Maynard, S., Fang, E. F., Scheibye-Knudsen, M., Croteau, D. L. & Bohr, V. A. DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harb. Perspect. Medicine 5, a025130 (2015).

    Article  CAS  Google Scholar 

  4. Ma, J., Setton, J., Lee, N. Y., Riaz, N. & Powell, S. N. The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nat. Commun. 9, 3292 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kubben, N. & Misteli, T. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat. Rev. Mol. Cell Biol. 18, 595–609 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bednarski, J. J. & Sleckman, B. P. At the intersection of DNA damage and immune responses. Nat. Rev. Immunol. 19, 231–242 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tiwari, V. & Wilson, D. M. 3rd DNA damage and associated DNA repair defects in disease and premature aging. Am. J. Hum. Genet. 105, 237–257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nagel, Z. D. et al. DNA repair capacity in multiple pathways predicts chemoresistance in glioblastoma multiforme. Cancer Res. 77, 198–206 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med 352, 997–1003 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Lord, C. J., Tutt, A. N. & Ashworth, A. Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu. Rev. Med. 66, 455–470 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Usanova, S. et al. Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression. Mol. Cancer 9, 248 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Link, J. T. & Overman, M. J. Immunotherapy progress in mismatch repair-deficient colorectal cancer and future therapeutic challenges. Cancer J. 22, 190–195 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Nagel, Z. D. et al. Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription inhibition and transcriptional mutagenesis. Proc. Natl Acad. Sci. USA 111, E1823–E1832 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chaim, I. A. et al. In vivo measurements of interindividual differences in DNA glycosylases and APE1 activities. Proc. Natl Acad. Sci. USA 114, E10379––E10388 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ramos, J. M. et al. DNA repair and breast carcinoma susceptibility in women. Cancer 100, 1352–1357 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Athas, W. F., Hedayati, M. A., Matanoski, G. M., Farmer, E. R. & Grossman, L. Development and field-test validation of an assay for DNA-repair in circulating human lymphocytes. Cancer Res. 51, 5786–5793 (1991).

    CAS  PubMed  Google Scholar 

  17. Qiao, Y. W. et al. Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes. Mutat. Res. 509, 165–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Brégeon, D. & Doetsch, P. W. Transcriptional mutagenesis: causes and involvement in tumour development. Nat. Rev. Cancer 11, 218–227 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. You, H. J., Viswanathan, A. & Doetsch, P. W. In vivo technique for determining transcriptional mutagenesis. Methods 22, 120–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Burger, K. et al. The influence of folic acid depletion on the Nucleotide Excision Repair capacity of human dermal fibroblasts measured by a modified Host Cell Reactivation Assay. Biofactors 31, 181–190 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Raetz, A. G. et al. Cancer-associated variants and a common polymorphism of MUTYH exhibit reduced repair of oxidative DNA damage using a GFP-based assay in mammalian cells. Carcinogenesis 33, 2301–2309 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gunn, A. & Stark, J. M. I-SceI-based assays to examine distinct repair outcomes of mammalian chromosomal double strand breaks. Methods Mol. Biol. 920, 379–391 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Mao, Z., Bozzella, M., Seluanov, A. & Gorbunova, V. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst.) 7, 1765–1771 (2008).

    Article  CAS  Google Scholar 

  24. Pierce, A. J., Johnson, R. D., Thompson, L. H. & Jasin, M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 13, 2633–2638 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stark, J. M., Pierce, A. J., Oh, J., Pastink, A. & Jasin, M. Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol. Cell Biol. 24, 9305–9316 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burns, J. A., Dreij, K., Cartularo, L. & Scicchitano, D. A. O6-Methylguanine induces altered proteins at the level of transcription in human cells. Nucleic Acids Res. 38, 8178–8187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nagel, Z. D. et al. Fluorescent reporter assays provide direct, accurate, quantitative measurements of MGMT status in human cells. PLoS ONE 14, e0208341 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lei, X. F., Zhu, Y., Tomkinson, A. & Sun, L. Z. Measurement of DNA mismatch repair activity in live cells. Nucleic Acids Res. 32, e100 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Johnson, J. M. & Latimer, J. J. Analysis of DNA repair using transfection-based host cell reactivation. in Molecular Toxicology Protocols (eds Keohavong, P. & Grant, G. G.) 321–335 (Humana Press, 2005).

  30. Baerenfaller, K., Fischer, F. & Jiricny, J. Characterization of the ‘mismatch repairosome’ and its role in the processing of modified nucleosides in vitro. in DNA Repair, Part A (eds Campbell, J. & Modrich, P.) 285–303 (Academic Press, 2006).

  31. Bregeon, D. & Doetsch, P. W. Reliable method for generating double-stranded DNA vectors containing site-specific base modifications. Biotechniques 37, 760–762 (2004). 764, 766.

    Article  CAS  PubMed  Google Scholar 

  32. Green, C. L., Loechler, E. L., Fowler, K. W. & Essigmann, J. M. Construction and characterization of extrachromosomal probes for mutagenesis by carcinogens: site-specific incorporation of O6-methylguanine into viral and plasmid genomes. Proc. Natl Acad. Sci. USA 81, 13–17 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moore, S. et al. The CHD6 chromatin remodeler is an oxidative DNA damage response factor. Nat. Commun. 10, 241 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lee, K. J. et al. Defective base excision repair in the response to DNA damaging agents in triple negative breast cancer. PLoS ONE 14, e0223725 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xiao, A. Y. et al. Sodium sulfide selectively induces oxidative stress, DNA damage, and mitochondrial dysfunction and radiosensitizes glioblastoma (GBM) cells. Redox Biol. 26, 101220 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chan, E. M. et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 568, 551–556 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Russo, M. et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science 366, 1473–1480 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Isogawa, A., Fuchs, R. P. & Fujii, S. Chromatin pull-down methodology based on DNA triple helix formation. Methods Mol. Biol. 2119, 183–199 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Schaub, J. M., Zhang, H., Soniat, M. M. & Finkelstein, I. J. Assessing protein dynamics on low-complexity single-stranded DNA curtains. Langmuir 34, 14882–14890 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Collins, B. E., Ye, L. F., Duzdevich, D. & Greene, E. C. DNA curtains: novel tools for imaging protein-nucleic acid interactions at the single-molecule level. Methods Cell Biol. 123, 217–234 (2014).

    Article  PubMed  Google Scholar 

  41. Nagel, Z. D. et al. Towards precision prevention: technologies for identifying healthy individuals with high risk of disease. Mutat. Res. 800–802, 14–28 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Azqueta, A. et al. DNA repair as a human biomonitoring tool: comet assay approaches. Mutat. Res. 781, 71–87 (2019).

    Article  CAS  Google Scholar 

  43. Gajski, G. et al. The comet assay in animal models: from bugs to whales (Part 2, Vertebrates). Mutat. Res. 781, 130–164 (2019).

    Article  CAS  Google Scholar 

  44. Ge, J. et al. CometChip: a high-throughput 96-well platform for measuring DNA damage in microarrayed human cells. J. Vis. Exp. 92, e50607 (2014).

    Google Scholar 

  45. Muruzabal, D. et al. Novel approach for the detection of alkylated bases using the enzyme-modified comet assay. Toxicol. Lett. 330, 108–117 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Ngo, L. P. et al. Sensitive CometChip assay for screening potentially carcinogenic DNA adducts by trapping DNA repair intermediates. Nucleic Acids Res. 48, e13 (2020).

    Article  PubMed  CAS  Google Scholar 

  47. Li, J. et al. DNA Repair Molecular Beacon assay: a platform for real-time functional analysis of cellular DNA repair capacity. Oncotarget 9, 31719–31743 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Forestier, A., Sarrazy, F., Caillat, S., Vandenbrouck, Y. & Sauvaigo, S. Functional DNA repair signature of cancer cell lines exposed to a set of cytotoxic anticancer drugs using a multiplexed enzymatic repair assay on biochip. PLoS ONE 7, e51754 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pons, B. et al. Age-associated modifications of Base Excision Repair activities in human skin fibroblast extracts. Mech. Ageing Dev. 131, 661–665 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Shen, J. C., Fox, E. J., Ahn, E. H. & Loeb, L. A. A rapid assay for measuring nucleotide excision repair by oligonucleotide retrieval. Sci. Rep. 4, 4894 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Golato, T. et al. Development of a cell-based assay for measuring base excision repair responses. Sci. Rep. 7, 13007 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Luria, S. E. Reactivation of ultraviolet-inactivated bacteriophage particles inside double-infected host cells. J. Bacteriol. 54, 79 (1947).

    CAS  PubMed  Google Scholar 

  53. Protic-Sabljic, M. & Kraemer, K. H. One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells. Proc. Natl Acad. Sci. USA 82, 6622–6626 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsien, R. Y. Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 48, 5612–5626 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Ito, S. et al. Fluorescence detection of DNA mismatch repair in human cells. Sci. Rep. 8, 12181 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Shuen, A. Y. et al. Functional repair assay for the diagnosis of constitutional mismatch repair deficiency from non-neoplastic tissue. J. Clin. Oncol. 37, 461–470 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Drost, M. et al. A functional assay-based procedure to classify mismatch repair gene variants in Lynch syndrome. Genet. Med. 21, 1486–1496 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Hempelmann, J. A., Scroggins, S. M., Pritchard, C. C. & Salipante, S. J. MSIplus for integrated colorectal cancer molecular testing by next-generation sequencing. J. Mol. Diagn. 17, 705–714 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Salipante, S. J., Scroggins, S. M., Hampel, H. L., Turner, E. H. & Pritchard, C. C. Microsatellite instability detection by next generation sequencing. Clin. Chem. 60, 1192–1199 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Boland, C. R. et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58, 5248–5257 (1998).

    CAS  PubMed  Google Scholar 

  61. Huerfano, S., Ryabchenko, B. & Forstová, J. Nucleofection of expression vectors induces a robust interferon response and inhibition of cell proliferation. DNA Cell Biol. 32, 467–479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fu, Y. et al. Inhibition of cGAS-mediated interferon response facilitates transgene expression. iScience 23, 101026 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakagawa, T., Bulger, M., Muramatsu, M. & Ito, T. Multistep chromatin assembly on supercoiled plasmid DNA by nucleosome assembly protein-1 and ATP-utilizing chromatin assembly and remodeling factor. J. Biol. Chem. 276, 27384–27391 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Shaul, O. How introns enhance gene expression. Int. J. Biochem. Cell Biol 91, 145–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125–8148 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Roy, S. & Schreiber, E. Detecting and quantifying low level gene variants in Sanger sequencing traces using the ab1 peak reporter tool. J. Biomol. Tech 25, S13–S14 (2014).

    PubMed Central  Google Scholar 

  67. Felgner, P. L. et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA 84, 7413–7417 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sun, M., Bernard, L. P., Dibona, V. L., Wu, Q. & Zhang, H. Calcium phosphate transfection of primary hippocampal neurons. J. Vis. Exp. 81, e50808 (2013).

    Google Scholar 

  69. Shapiro, H. Practical Flow Cytometry 4th edn (Wiley, 2003).

  70. Kiziltepe, T. et al. Delineation of the chemical pathways underlying nitric oxide-induced homologous recombination in mammalian cells. Chem. Biol. 12, 357–369 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Perfetto, S. P., Ambrozak, D., Nguyen, R., Chattopadhyay, P. & Roederer, M. Quality assurance for polychromatic flow cytometry. Nat. Protoc. 1, 1522–1530 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Fong, Y. W., Cattoglio, C. & Tjian, R. The intertwined roles of transcription and repair proteins. Mol. Cell 52, 291–302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants 1U01ES029520, P30ES000002 and 5P01CA092584.

Author information

Authors and Affiliations

Authors

Contributions

C.G.P., T.J.P. and D.J.L. prepared samples, designed and conducted experiments and developed the method. They were supervised by Z.D.N. All authors contributed to the writing and editing of the manuscript and approved the final version.

Corresponding author

Correspondence to Z. D. Nagel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Bennet van Houten and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Nagel, Z. D. et al. Proc. Natl Acad. Sci. USA 111, E1823–E1832 (2014): https://doi.org/10.1073/pnas.1401182111

Chaim, I. A. et al. Proc. Natl Acad. Sci. USA 114, E10379–E10388 (2017): https://doi.org/10.1073/pnas.1712032114

Nagel, Z. D. et al. Cancer Res. 77, 198–206 (2017): https://doi.org/10.1158/0008-5472.can-16-1151

Extended data

Extended Data Fig. 1 Gel electrophoretic analysis and flow cytometric validation of GFP_Hx, mPlum_A-8oxoG and mOrange_8oxoG-C reporter plasmids.

a, Analytical digest and flow cytometric validation of GFP_Hx plasmid. Lane 1: NEB 1-kb MW ladder; lane 2: pMax_GFP_C289T ccDNA; lane 3: HIA overnight extension reaction for GFP_Hx; lane 4: pMax_GFP_C289T ccDNA; lane 5: pMax_GFP_C289T after a 45-min ApaLI digestion at 37 °C, which cleaves two restriction sites, resulting in two linear DNA fragments; lane 6: GFP_Hx ccDNA after T5 Exo and PEG purification steps; and lane 7: GFP_Hx after a 45-min ApaLI digestion at 37 °C, in which the Hx lesion blocks ApaLI cleavage of one restriction site, leaving a single linearized fragment. At right: flow cytometric quantitation of percent reporter expression and normalized relative reporter expression in WT HAP cells compared to MPG−/− HAP cells. b, Analytical digestion and flow cytometric validation of mPlum_A-8oxoG plasmid. Lane 1: HIA overnight extension reaction for mPlum_A-8oxoG; lane 2: pMax_mPlum ccDNA; lane 3: pMax_mPlum after a 45-min Fpg endonuclease digestion at 37 °C; lane 4: mPlum_A-8oxoG after T5 Exo and PEG purification steps; lane 5: mPlum_A-8oxoG after a 45-min Fpg endonuclease digestion at 37 °C, resulting in plasmid nicking and upward mobility shift. At right: flow cytometric quantitation of percent reporter expression and normalized relative reporter expression in WT HAP cells compared to MUTYH−/− HAP cells. c, Analytical digestion and flow cytometric validation of mOrange_8oxoG-C plasmid. Lane 1: NEB 1-kb MW ladder; lane 2: pMax_mOrange_A215C ssDNA; lane 3: pMax_mOrange_A215C ocDNA; lane 4: pMax_mOrange_A215C ccDNA; lane 5: pMax_mOrange_A215C after a 45-min Fpg endonuclease digestion at 37 °C; lane 6: mOrange_8oxoG-C ccDNA; and lane 7: mOrange_8oxoG-C after a 45-min Fpg endonuclease digestion at 37 °C, which introduces a nick at the 8oxoG lesion, resulting in upward mobility shift. At right: flow cytometric quantitation of percent reporter expression and normalized relative reporter expression in WT MEF cells compared to OGG1−/− MEF cells. Error bars represent s.e.m. from three to four biological replicates; differences of statistical significance (*, P < 0.05; ***, P < 0.005; ****, P < 0.0001) were determined by unpaired two-tailed t test.

Source data

Extended Data Fig. 2 Gel electrophoretic analysis and flow cytometric validation of mPlum_O6-MeG and BFP_U reporter plasmids.

a, Analytical digestion and flow cytometric validation of mPlum_O6-MeG plasmid. Lane 1: NEB 1-kb MW ladder; lane 2: pMax_mPlum_C207G/T208C ccDNA; lane 3: pMax_mPlum_C207G/T208C after a 45-min PspOMI digestion at 37 °C, resulting in linear pMax_mPlum_C207G/T208C starting plasmid; lane 4: mPlum_O6-MeG plasmid after T5 Exo and PEG purification steps; lane 5: mPlum_O6-MeG after a 45-min PspOMI digestion at 37 °C, in which the O6 group on the guanine blocks linearization by PspOMI, leaving predominantly ccDNA product (note: upon extended digestion or when excess enzyme is present, some linearized DNA will result). At right: flow cytometric quantitation of percent reporter expression and normalized relative reporter expression in MGMT-deficient TK6 cells compared to TK6 cells complimented with stable MGMT expression. b, Analytical digestion and flow cytometric validation of BFP_U plasmid. Lane 1: NEB 1-kb MW ladder; lane 2: pMax_BFP_A191G ccDNA; lane 3: pMax_BFP_A191G ocDNA; lane 4: pMax_BFP_A191G after a 5-min UDG digestion at 37 °C, followed by a 30-min APE1 digestion at 37 °C; lane 5: BFP_U after a 5-min UDG digestion at 37 °C, followed by a 30-min APE1 digestion at 37 °C, resulting in UDG excising the incorporated uracil, followed by APE1 nicking the abasic site, resulting in an upward gel mobility shift; lane 6: BFP_U plasmid after T5 Exo and PEG purification steps. At right: Flow cytometric quantitation of percent reporter expression and normalized relative reporter expression in WT MEF cells compared to UNG−/− MEF cells. Error bars represent s.e.m. from three to four biological replicates; differences of statistical significance (*, P < 0.05; **, P < 0.005; ***, P < 0.005) were determined by unpaired two-tailed t test.

Source data

Extended Data Fig. 3 Gel electrophoretic analysis and flow cytometric validation of mOrange_GG plasmid.

a, Gel electrophoretic analysis of mOrange_GG plasmid. Lane 1: NEB 1-kb MW ladder; lane 2: PMax_mOrange_G299C ccDNA; lane 3: HIA overnight extension reaction for mOrange_GG; lane 4: mOrange_GG after a 3-h digestion with T5 Exo; lane 5: mOrange_GG after PEG precipitation step; and lane 6: final mOrange_GG ccDNA after T5 Exo and PEG purification steps. b, Flow cytometric quantitation of percent reporter expression and normalized relative reporter expression in TK6 cells compared to MMR-deficient MT1 lymphoblastoid cells. Error bars represent s.e.m. from three to four biological replicates; differences of statistical significance (***, P < 0.005) were determined by unpaired two-tailed t test.

Source data

Supplementary information

Source data

Source Data Fig. 7

Raw data used in column plots.

Source Data Extended Data Fig. 1

Raw data used in column plots.

Source Data Extended Data Fig. 2

Raw data used in column plots.

Source Data Extended Data Fig. 3

Raw data used in column plots.

Source Data Extended Data Fig. 1

Unprocessed gel images.

Source Data Extended Data Fig. 2

Unprocessed gel images.

Source Data Extended Data Fig. 3

Unprocessed gel images.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piett, C.G., Pecen, T.J., Laverty, D.J. et al. Large-scale preparation of fluorescence multiplex host cell reactivation (FM-HCR) reporters. Nat Protoc 16, 4265–4298 (2021). https://doi.org/10.1038/s41596-021-00577-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00577-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing