Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Multiplexed bioluminescence-mediated tracking of DNA double-strand break repairs in vitro and in vivo

Abstract

The dynamics of DNA double-strand break (DSB) repairs including homology-directed repair and nonhomologous end joining play an important role in diseases and therapies. However, investigating DSB repair is typically a low-throughput and cross-sectional process, requiring disruption of cells and organisms for subsequent nuclease-, sequencing- or reporter-based assays. In this protocol, we provide instructions for establishing a bioluminescent repair reporter system using engineered Gaussia and Vargula luciferases for noninvasive tracking of homology-directed repair and nonhomologous end joining, respectively, induced by SceI meganuclease, SpCas9 or SpCas9 D10A nickase-mediated editing. We also describe complementation with orthogonal DSB repair assays and omics analyses to validate the reporter readouts. The bioluminescent repair reporter system provides longitudinal and rapid readout (~seconds per sample) to accurately and efficiently measure the efficacy of genome-editing tools and small-molecule modulators on DSB repair. This protocol takes ~2–4 weeks to establish, and as little as 2 h to complete the assay. The entire bioluminescent repair reporter procedure can be performed by one person with standard molecular biology expertise and equipment. However, orthogonal DNA repair assays would require a specialized facility that performs Sanger sequencing or next-generation sequencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BLRR reporter design.
Fig. 2: Potential applications of the BLRR assay.
Fig. 3: Multiplexed applications of the BLRR assay.
Fig. 4: Overview of the BLRR assay procedure.
Fig. 5: Expected results from BLRR assays and orthogonal assays using Cas9 D10A nickase, trGluc and ssDNA as donor templates.

Similar content being viewed by others

Data availability

All requests should be addressed to the corresponding authors.

References

  1. Maynard, S., Fang, E. F., Scheibye-Knudsen, M., Croteau, D. L. & Bohr, V. A. DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a025130 (2015).

  2. Gomez-Herreros, F. DNA Double strand breaks and chromosomal translocations induced by DNA topoisomerase II. Front. Mol. Biosci. 6, 141 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chang, H. H. Y., Pannunzio, N. R., Adachi, N. & Lieber, M. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Toulany, M. Targeting DNA double-strand break repair pathways to improve radiotherapy response. Genes (Basel) https://doi.org/10.3390/genes10010025 (2019).

  7. Kesari, S. et al. DNA damage response and repair: insights into strategies for radiation sensitization of gliomas. Future Oncol. 7, 1335–1346 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Gil Del Alcazar, C. R., Todorova, P. K., Habib, A. A., Mukherjee, B. & Burma, S. Augmented HR repair mediates acquired temozolomide resistance in glioblastoma. Mol. Cancer Res. 14, 928–940 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Welsh, J. W. et al. Rad51 protein expression and survival in patients with glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 74, 1251–1255 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. King, H. O. et al. RAD51 is a selective DNA repair target to radiosensitize glioma stem cells. Stem Cell Rep. 8, 125–139 (2017).

    Article  CAS  Google Scholar 

  11. Mashal, R. D., Koontz, J. & Sklar, J. Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat. Genet. 9, 177–183 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Germini, D. et al. A comparison of techniques to evaluate the effectiveness of genome editing. Trends Biotechnol. 36, 147–159 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Chien, J. C. et al. A multiplexed bioluminescent reporter for sensitive and non-invasive tracking of DNA double strand break repair dynamics in vitro and in vivo. Nucleic Acids Res. 48, e100 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haddock, S. H., Moline, M. A. & Case, J. F. Bioluminescence in the sea. Ann. Rev. Mar. Sci. 2, 443–493 (2010).

    Article  PubMed  Google Scholar 

  15. Lin, S., Staahl, B. T., Alla, R. K. & Doudna, J. A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3, e04766 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bovenberg, M. S. et al. Multiplex blood reporters for simultaneous monitoring of cellular processes. Anal. Chem. 85, 10205–10210 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Nakajima, Y., Kobayashi, K., Yamagishi, K., Enomoto, T. & Ohmiya, Y. cDNA cloning and characterization of a secreted luciferase from the luminous Japanese ostracod, Cypridina noctiluca. Biosci. Biotechnol. Biochem. 68, 565–570 (2004).

    Article  PubMed  Google Scholar 

  18. Wurdinger, T. et al. A secreted luciferase for ex vivo monitoring of in vivo processes. Nat. Methods 5, 171–173 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hendel, A. et al. Quantifying genome-editing outcomes at endogenous loci with SMRT sequencing. Cell Rep. 7, 293–305 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Cox, D. B., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Certo, M. T. et al. Tracking genome engineering outcome at individual DNA breakpoints. Nat. Methods 8, 671–676 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, Z. et al. Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Res. 43, e59 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ramakrishna, S. et al. Surrogate reporter-based enrichment of cells containing RNA-guided Cas9 nuclease-induced mutations. Nat. Commun. 5, 3378 (2014).

    Article  PubMed  CAS  Google Scholar 

  25. Cornu, T. I., Mussolino, C. & Cathomen, T. Refining strategies to translate genome editing to the clinic. Nat. Med. 23, 415–423 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Makarova, K. S. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yeh, C. D., Richardson, C. D. & Corn, J. E. Advances in genome editing through control of DNA repair pathways. Nat. Cell Biol. 21, 1468–1478 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Beckta, J. M., Bindra, R. S. & Chalmers, A. J. Targeting DNA repair in gliomas. Curr. Opin. Neurol. 32, 878–885 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Huang, R. X. & Zhou, P. K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct. Target Ther. 5, 60 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peng, Y. et al. The deubiquitylating enzyme USP15 regulates homologous recombination repair and cancer cell response to PARP inhibitors. Nat. Commun. 10, 1224 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hendel, A., Fine, E. J., Bao, G. & Porteus, M. H. Quantifying on- and off-target genome editing. Trends Biotechnol. 33, 132–140 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qiu, P. et al. Mutation detection using Surveyor nuclease. Biotechniques 36, 702–707 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Brinkman, E. K. et al. Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Res. 46, e58 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pinello, L. et al. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat. Biotechnol. 34, 695–697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Porteus, M. H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    Article  PubMed  Google Scholar 

  37. Szczepek, M. et al. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat. Biotechnol. 25, 786–793 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, H. et al. CRISPR-mediated live imaging of genome editing and transcription. Science 365, 1301–1305 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, Y. et al. Very fast CRISPR on demand. Science 368, 1265–1269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, A. et al. AAV-CRISPR gene editing is negated by pre-existing immunity to Cas9. Mol. Ther. 28, 1432–1441 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wagner, D. L. et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 25, 242–248 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Bindra, R. S., Goglia, A. G., Jasin, M. & Powell, S. N. Development of an assay to measure mutagenic non-homologous end-joining repair activity in mammalian cells. Nucleic Acids Res. 41, e115–e115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin, Y., Lukacsovich, T. & Waldman, A. S. Multiple pathways for repair of DNA double-strand breaks in mammalian chromosomes. Mol. Cell. Biol. 19, 8353–8360 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gaj, T., Gersbach, C. A. & Barbas, C. F. 3rd ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van Haasteren, J., Li, J., Scheideler, O. J., Murthy, N. & Schaffer, D. V. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat. Biotechnol. 38, 845–855 (2020).

    Article  PubMed  CAS  Google Scholar 

  47. Yin, H., Kauffman, K. J. & Anderson, D. G. Delivery technologies for genome editing. Nat. Rev. Drug Discov. 16, 387–399 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Pinkham, K. et al. Stearoyl CoA desaturase is essential for regulation of endoplasmic reticulum homeostasis and tumor growth in glioblastoma cancer stem cells. Stem Cell Rep. 12, 712–727 (2019).

    Article  CAS  Google Scholar 

  49. Huang, F., Mazina, O. M., Zentner, I. J., Cocklin, S. & Mazin, A. V. Inhibition of homologous recombination in human cells by targeting RAD51 recombinase. J. Med. Chem. 55, 3011–3020 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Leahy, J. J. et al. Identification of a highly potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor (NU7441) by screening of chromenone libraries. Bioorg. Med. Chem. Lett. 14, 6083–6087 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Verhaegent, M. & Christopoulos, T. K. Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Anal. Chem. 74, 4378–4385 (2002).

    Article  PubMed  CAS  Google Scholar 

  52. Thompson, E. M., Nagata, S. & Tsuji, F. I. Vargula hilgendorfii luciferase: a secreted reporter enzyme for monitoring gene expression in mammalian cells. Gene 96, 257–262 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Vouillot, L., Thelie, A. & Pollet, N. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda) 5, 407–415 (2015).

    Article  PubMed Central  Google Scholar 

  54. Guell, M., Yang, L. & Church, G. M. Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). Bioinformatics 30, 2968–2970 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Degeling, M. H., Maguire, C. A., Bovenberg, M. S. & Tannous, B. A. Sensitive assay for mycoplasma detection in mammalian cell culture. Anal. Chem. 84, 4227–4232 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shimomura, O. & Johnson, F. H. Mechanisms in the quantum yield of Cypridina bioluminescence. Photochem. Photobiol. 12, 291–295 (1970).

    Article  CAS  PubMed  Google Scholar 

  57. Lundholt, B. K., Scudder, K. M. & Pagliaro, L. A simple technique for reducing edge effect in cell-based assays. J. Biomol. Screen. 8, 566–570 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Szymczak, A. L. et al. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat. Biotechnol. 22, 589–594 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. & Valen, E. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 42, W401–W407 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Lai Lab and the Badr Lab for the very helpful discussions. This work was supported by the Ministry of Science and Technology (MOST) grants (104-2320-B-007-005-MY2, 106-2320-B-007-004-MY3, 109-2628-B-001-017 to C.P.-K.L.), Academia Sinica Innovative Materials and Analysis Technology Exploration (i-MATE) Program (AS-iMATE-107-33 to C.P.-K.L.), Academia Sinica Career Development Award (AS-CDA-109-M04 C.P.-K.L.), the National Institutes of Health (K22CA197053 and R01NS113822 to C.E.B.) and the American Brain Tumor Association (ABTA) Discovery Grant supported by the Uncle Kory Foundation to C.E.B.

Author information

Authors and Affiliations

Authors

Contributions

C.P.-K.L. and C.E.B. conceived and designed the study. J.C.C. conducted the in vitro experiments and developed the procedures. C.E.B developed the in vivo procedures. The manuscript was written by J.C.C., C.E.B. and C.P.-K.L. with input from all authors.

Corresponding authors

Correspondence to Christian E. Badr or Charles Pin-Kuang Lai.

Ethics declarations

Competing interests

A provisional patent application on the BLRR reporter has been submitted.

Additional information

Peer review information Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Chien, J. C. et al. Nucleic Acids Res. 48, e100 (2020): https://doi.org/10.1093/nar/gkaa669

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chien, J.CY., Badr, C.E. & Lai, C.PK. Multiplexed bioluminescence-mediated tracking of DNA double-strand break repairs in vitro and in vivo. Nat Protoc 16, 3933–3953 (2021). https://doi.org/10.1038/s41596-021-00564-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00564-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing