Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generation of insulin-producing pancreatic β cells from multiple human stem cell lines

Abstract

We detail a six-stage planar differentiation methodology for generating human pluripotent stem cell–derived pancreatic β cells (SC-β cells) that secrete high amounts of insulin in response to glucose stimulation. This protocol first induces definitive endoderm by treatment with Activin A and CHIR99021, then generates PDX1+/NKX6-1+ pancreatic progenitors through the timed application of keratinocyte growth factor, SANT1, TPPB, LDN193189 and retinoic acid. Endocrine induction and subsequent SC-β-cell specification is achieved with a cocktail consisting of the cytoskeletal depolymerizing compound latrunculin A combined with XXI, T3, ALK5 inhibitor II, SANT1 and retinoic acid. The resulting SC-β cells and other endocrine cell types can then be aggregated into islet-like clusters for analysis and transplantation. This differentiation methodology takes ~34 d to generate functional SC-β cells, plus an additional 1–2 weeks for initial stem cell expansion and final cell assessment. This protocol builds upon a large body of previous work for generating β-like cells. In this iteration, we have eliminated the need for 3D culture during endocrine induction, allowing for the generation of highly functional SC-β cells to be done entirely on tissue culture polystyrene. This change simplifies the differentiation methodology, requiring only basic stem cell culture experience as well as familiarity with assessment techniques common in biology laboratories. In addition to expanding protocol accessibility and simplifying SC-β-cell generation, we demonstrate that this planar methodology is amenable for differentiating SC-β cells from a wide variety of cell lines from various sources, broadening its applicability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the six-stage SC-β-cell differentiation protocol.
Fig. 2: Morphology of differentiating cells.
Fig. 3: Quality control during differentiation.
Fig. 4: Setup for the dynamic GSIS assay.
Fig. 5: SC-β cells differentiated from a wide range of cell lines.
Fig. 6: In-depth characterization of SC-β cells.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Any other data are available from the corresponding author upon reasonable request.

References

  1. Brennan, D. C., Kopetskie, H. A. & Sayre, P. H. Long-term follow-up of the Edmonton protocol of islet transplantation in the United States. Am. J. Transpl. 16, 509–517 (2016).

    Article  CAS  Google Scholar 

  2. Shapiro, J. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. D’Amour, K. A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23, 1534–1541 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. D’Amour, K. A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24, 1392–1401 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. Nostro, M. C. et al. Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138, 861–871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kunisada, Y., Tsubooka-Yamazoe, N., Shoji, M. & Hosoya, M. Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res. 8, 274–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Borowiak, M. et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4, 348–358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sneddon, J. B., Borowiak, M. & Melton, D. A. Self-renewal of embryonic-stem-cell-derived progenitors by organ-matched mesenchyme. Nature 491, 765–768 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mahaddalkar, P. U. et al. Generation of pancreatic β cells from CD177+ anterior definitive endoderm. Nat. Biotechnol. 38, 1061–1072 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Xu, X., Browning, V. L. & Odorico, J. S. Activin, BMP and FGF pathways cooperate to promote endoderm and pancreatic lineage cell differentiation from human embryonic stem cells. Mech. Dev. 128, 412–427 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Nostro, M. C. & Keller, G. Generation of beta cells from human pluripotent stem cells: Potential for regenerative medicine. Semin. Cell Dev. Biol. 23, 701–710 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26, 443–452 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Rezania, A. et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61, 2016–2029 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bruin, J. E. et al. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia 56, 1987–1998 (2013).

    Article  PubMed  Google Scholar 

  15. Bruin, J. E. et al. Accelerated maturation of human stem cell-derived pancreatic progenitor cells into insulin-secreting cells in immunodeficient rats relative to mice. Stem Cell Rep. 5, 1081–1096 (2015).

    Article  CAS  Google Scholar 

  16. Rezania, A. et al. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31, 2432–2442 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Kelly, O. G. et al. Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat. Biotechnol. 29, 750–756 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Schaffer, A. E., Freude, K. K., Nelson, S. B. & Sander, M. Nkx6 transcription factors and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors. Dev. Cell 18, 1022–1029 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nelson, S. B., Schaffer, A. E. & Sander, M. The transcription factors Nkx6.1 and Nkx6.2 possess equivalent activities in promoting beta-cell fate specification in Pdx1+ pancreatic progenitor cells. Development 134, 2491–2500 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Nostro, M. C. et al. Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Rep. 4, 591–604 (2015).

    Article  CAS  Google Scholar 

  21. Veres, A. et al. Charting cellular identity during human in vitro β -cell differentiation. Nature 569, 368–373 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sharon, N. et al. Wnt signaling separates the progenitor and endocrine compartments during pancreas development. Cell Rep. 27, 2281–2291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johansson, K. A. et al. Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev. Cell 12, 457–465 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Russ, H. A. et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J. 34, 1759–1772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nair, G. G. et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat. Cell Biol. 21, 263–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sui, L. et al. β-Cell replacement in mice using human type 1 diabetes nuclear transfer embryonic stem cells. Diabetes 67, 26–35 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Alvarez-Dominguez, J. R. et al. Circadian entrainment triggers maturation of human in vitro islets. Cell Stem Cell 26, 108–122.e10 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, X. et al. LIN28B Impairs the transition of hESC-derived β cells from the juvenile to adult state. Stem Cell Rep. 14, 9–20 (2020).

    Article  CAS  Google Scholar 

  31. Cogger, K. F. et al. Glycoprotein 2 is a specific cell surface marker of human pancreatic progenitors. Nat. Commun. 8, 331 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Johannesson, B., Sui, L., Freytes, D. O., Creusot, R. J. & Egli, D. Toward beta cell replacement for diabetes. EMBO J. 34, 841–855 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sneddon, J. B. et al. Stem cell therapies for treating diabetes: progress and remaining challenges. Cell Stem Cell 22, 810–823 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Millman, J. R. & Pagliuca, F. W. Autologous pluripotent stem cell-derived β-like cells for diabetes cellular therapy. Diabetes 66, 1111–1120 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Nair, G. G., Tzanakakis, E. S. & Hebrok, M. Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy. Nat. Rev. Endocrinol. 16, 506–518 (2020).

    Article  PubMed  Google Scholar 

  36. Latres, E., Finan, D. A., Greenstein, J. L., Kowalski, A. & Kieffer, T. J. Navigating two roads to glucose normalization in diabetes: automated insulin delivery devices and cell therapy. Cell Metab. 29, 545–563 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Johnson, J. D. The quest to make fully functional human pancreatic beta cells from embryonic stem cells: climbing a mountain in the clouds. Diabetologia 59, 2047–2057 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Tremmel, D. M., Mitchell, S. A., Sackett, S. D. & Odorico, J. S. Mimicking nature-made beta cells: recent advances towards stem cell-derived islets. Curr. Opin. Organ Transplant. 24, 574–581 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Velazco-Cruz, L., Goedegebuure, M. M. & Millman, J. R. Advances toward engineering functionally mature human pluripotent stem cell-derived β cells. Front. Bioeng. Biotechnol. 8, 786 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Velazco-Cruz, L. et al. Acquisition of dynamic function in human stem cell-derived β cells. Stem Cell Rep. 12, 351–365 (2019).

    Article  CAS  Google Scholar 

  41. Hogrebe, N. J., Augsornworawat, P., Maxwell, K. G., Velazco-Cruz, L. & Millman, J. R. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat. Biotechnol. 38, 460–470 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maxwell, K. G. et al. Gene-edited human stem cell–derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci. Transl. Med. 12, eaax9106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Kilian, K. A., Bugarija, B., Lahn, B. T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. 107, 4872–4877 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Mamidi, A. et al. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature 564, 114–118 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Rosado-Olivieri, E. A., Anderson, K., Kenty, J. H. & Melton, D. A. YAP inhibition enhances the differentiation of functional stem cell-derived insulin-producing β cells. Nat. Commun. 10, 1464 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Cebola, I. et al. TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors. Nat. Cell Biol. 17, 615–626 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Slaoui, M. & Fiette, L. Histopathology procedures: from tissue sampling to histopathological evaluation. Methods Mol. Biol. 691, 69–82 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Augsornworawat, P., Maxwell, K. G., Velazco-Cruz, L. & Millman, J. R. Single-cell transcriptome profiling reveals β cell maturation in stem cell-derived islets after transplantation. Cell Rep. 32, 108067 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the JDRF Career Development Award (5-CDA-2017-391-A-N), the National Institutes of Health (NIH) (R01DK114233, R01DK127497) and startup funds from the Washington University School of Medicine Department of Medicine. N.J.H. was supported by the JDRF (3-APF-2020-930-A-N). K.G.M. was supported by the NIH (T32DK108742). Microscopy was performed through the Washington University Center for Cellular Imaging, which is supported by the Washington University School of Medicine, the Children’s Discovery Institute (CDI-CORE-2015-505) and the Foundation for Barnes-Jewish Hospital (3770). Microscopy analysis was supported by the Washington University Diabetes Research Center (P30DK020579).

Author information

Authors and Affiliations

Authors

Contributions

N.J.H., K.G.M. and P.A. collected data for all experiments. N.J.H., K.G.M., P.A. and J.R.M. designed the experiments, wrote the manuscript and revised the manuscript.

Corresponding author

Correspondence to Jeffrey R. Millman.

Ethics declarations

Competing interests

N.J.H., K.G.M., P.A., and J.R.M. are inventors on patents and patent applications related to SC-β cells. J.R.M. is a consultant for Sana Biotechnology. K.G.M., P.A. and J.R.M. are cofounders of Salentra Biosciences.

Additional information

Peer review information Nature Protocols thanks Heiko Lickert and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Hogrebe, N. et al. Nat. Biotechnol. 38, 460–470 (2020): https://doi.org/10.1038/s41587-020-0430-6

Maxwell, K. G. et al. Sci. Transl. Med. 12, eaax9106 (2020): https://doi.org/10.1126/scitranslmed.aax9106

Augsornworawat, P. et al. Cell Reports 32, 108067 (2020): https://doi.org/10.1016/j.celrep.2020.108067

Supplementary information

Source data

Source Data Fig. 5

Source data and example calculations for Fig. 5.

Source Data Fig. 6

Source data and example calculations for Fig. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hogrebe, N.J., Maxwell, K.G., Augsornworawat, P. et al. Generation of insulin-producing pancreatic β cells from multiple human stem cell lines. Nat Protoc 16, 4109–4143 (2021). https://doi.org/10.1038/s41596-021-00560-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00560-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing