Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Graphene- and metal-induced energy transfer for single-molecule imaging and live-cell nanoscopy with (sub)-nanometer axial resolution

Abstract

Super-resolution fluorescence imaging that surpasses the classical optical resolution limit is widely utilized for resolving the spatial organization of biological structures at molecular length scales. In one example, single-molecule localization microscopy, the lateral positions of single molecules can be determined more precisely than the diffraction limit if the camera collects individual photons separately. Using several schemes that introduce engineered optical aberrations in the imaging optics, super-resolution along the optical axis (perpendicular to the sample plane) has been achieved, and single-molecule localization microscopy has been successfully applied for the study of 3D biological structures. Nonetheless, the achievable axial localization accuracy is typically three to five times worse than the lateral localization accuracy. Only a few exceptional methods based on interferometry exist that reach nanometer 3D super-resolution, but they involve enormous technical complexity and restricted sample preparations that inhibit their widespread application. We developed metal-induced energy transfer imaging for localizing fluorophores along the axial direction with nanometer accuracy, using only a conventional fluorescence lifetime imaging microscope. In metal-induced energy transfer, experimentally measured fluorescence lifetime values increase linearly with axial distance in the range of 0–100 nm, making it possible to calculate their axial position using a theoretical model. If graphene is used instead of the metal (graphene-induced energy transfer), the same range of lifetime values occurs over a shorter axial distance (~25 nm), meaning that it is possible to get very accurate axial information at the scale of a membrane bilayer or a molecular complex in a membrane. Here, we provide a step-by-step protocol for metal- and graphene-induced energy transfer imaging in single molecules, supported lipid bilayer and live-cell membranes. Depending on the sample preparation time, the complete duration of the protocol is 1–3 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Working principle of MIET and GIET.
Fig. 2: Experimental setup and work design.
Fig. 3: Orientation of fluorescent emitters.
Fig. 4: Single-molecule localization using GIET.
Fig. 5: GIET experiments on SLB.
Fig. 6: Comparison of basal membrane profiles of three different cell types.
Fig. 7: MIET GUI.

Similar content being viewed by others

Data availability

The raw data files corresponding to Figs. 36 can be downloaded from https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/NIDERQ.

Code availability

A custom-written open-source MATLAB-based MIET GUI is available from https://projects.gwdg.de/projects/miet/repository/raw/MIET_GUI.zip?rev=ZIP. The MATLAB-based software package for fluorescence lifetime fitting is available free of charge at https://www.joerg-enderlein.de/software.

References

  1. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hess, S. T., Girirajan, T. P. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 47, 6172–6176 (2008).

    Article  CAS  Google Scholar 

  5. Sharonov, A. & Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl Acad. Sci. USA 103, 18911–18916 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schnitzbauer, Joerg et al. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12.6, 1198 (2017).

    Article  Google Scholar 

  7. Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2016).

    Article  PubMed  Google Scholar 

  8. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Gwosch, K. C. et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17, 217–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Shtengel, G. et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl Acad. Sci. USA 106, 3125–3130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aquino, D. et al. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nat. Methods 8, 353–359 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Schmidt, R. et al. Spherical nanosized focal spot unravels the interior of cells. Nat. Methods 5, 539–544 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Hell, S. W., Schmidt, R. & Egner, A. Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nat. Photonics 3, 381–387 (2009).

    Article  CAS  Google Scholar 

  14. Juette, M. F. et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5, 527–529 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional superresolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Backlund, M. P. et al. Simultaneous, accurate measurement of the 3D position and orientation of single molecules. Proc. Natl Acad. Sci. USA 109, 19087–19092 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Santos, D. et al. Topography of cells revealed by variable-angle total internal reflection fluorescence microscopy. Biophys. J. 111, 1316–1327 (2016).

    Article  Google Scholar 

  18. Loerke, D., Stühmer, W. & Oheim, M. Quantifying axial secretory-granule motion with variable-angle evanescent-field excitation. J. Neurosci. Methods 119, 65–73 (2002).

    Article  PubMed  Google Scholar 

  19. Winterflood, C. M. et al. Nanometer axial resolution by three-dimensional supercritical angle fluorescence microscopy. Phys. Rev. Lett. 105, 108103 (2010).

    Article  PubMed  Google Scholar 

  20. Deschamps, J., Mund, M. & Ries, J. 3D superresolution microscopy by supercritical angle detection. Opt. Express, 22, 29081–29091 (2014).

    Article  Google Scholar 

  21. Chizhik, A. I., Rother, J., Gregor, I., Janshoff, A. & Enderlein, J. Metal-induced energy transfer for live cell nanoscopy. Nat. Photonics 8, 124–127 (2014).

    Article  CAS  Google Scholar 

  22. Karedla, N. et al. Single-molecule metal-induced energy transfer (smMIET): resolving nanometer distances at the single-molecule level. ChemPhysChem 15, 705–711 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Ghosh, A. et al. Graphene-based metal-induced energy transfer for sub-nanometre optical localization. Nat. Photonics 13, 860–865 (2019).

    Article  CAS  Google Scholar 

  24. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baronsky, T. et al. Cell–substrate dynamics of the epithelial-to-mesenchymal transition. Nano Lett. 17, 3320–3326 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Chance, R., Prock, A. & Silbey, R. Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 37, 1–65 (1978).

    CAS  Google Scholar 

  27. Enderlein, J. Single-molecule fluorescence near a metal layer. Chem. Phys. 247, 1–9 (1999).

    Article  CAS  Google Scholar 

  28. Gregor, I. et al. Metal-induced energy transfer. Nanophotonics 8, 1689–1699 (2019).

    Article  Google Scholar 

  29. Chizhik, A. I. & Enderlein, J. Metal-induced energy transfer imaging. in Nanoscale Photonic Imaging (eds Salditt, T. et al.) 227–239 (Springer, 2020).

  30. Simoncelli, S., Makarova, M., Wardley, W. & Owen, D. M. Toward an axial nanoscale ruler for fluorescence microscopy. ACS Nano 11, 11762–11767 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Chizhik, A. M. et al. Dual-color metal-induced and Förster resonance energy transfer for cell nanoscopy. Mol. Biol. Cell 29, 846–851 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chizhik, A. M. et al. Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging. ACS Nano 11, 11839–11846 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Zelená, A. et al. Time-resolved MIET measurements of blood platelet spreading and adhesion. Nanoscale 12, 21306–21315 (2020).

    Article  PubMed  Google Scholar 

  34. Isbaner, S. et al. Axial colocalization of single molecules with nanometer accuracy using metal-induced energy transfer. Nano Lett. 18, 2616–2622 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Karedla, N. et al. Three-dimensional single-molecule localization with nanometer accuracy using metal-induced energy transfer (MIET) imaging. J. Chem. Phys. 148, 204201 (2018).

    Article  PubMed  Google Scholar 

  36. Moerland, R. J. & Hoogenboom, J. P. Subnanometer-accuracy optical distance ruler based on fluorescence quenching by transparent conductors. Optica 3, 112–117 (2016).

    Article  CAS  Google Scholar 

  37. Wei, D. et al. Ultrathin rechargeable all-solid-state batteries based on monolayer graphene. J. Mater. Chem. A 1, 3177–3181 (2013).

    Article  CAS  Google Scholar 

  38. Chizhik, A. I., Gregor, I., Ernst, B. & Enderlein, J. Nanocavity-based determination of absolute values of photoluminescence quantum yields. ChemPhysChem 14, 505–513 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Schneider, F., Ruhlandt, D., Gregor, I., Enderlein, J. & Chizhik, A. I. Quantum yield measurements of fluorophores in lipid bilayers using a plasmonic nanocavity. J. Phys. Chem. Lett. 8, 1472–1475 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Oleksiievets, N. et al. Wide-field fluorescence lifetime imaging of single molecules. J. Phys. Chem. A 124, 3494–3500 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Maruyama, Y. & Charbon, E. An all-digital, time-gated 128X128 spad array for on-chip, filter-less fluorescence detection. 16th International Solid-State Sensors, Actuators and Microsystems Conference, 1180-1183. (2011)

  42. Böhmer, M. & Enderlein, J. Orientation imaging of single molecules by wide-field epifluorescence microscopy. J. Opt. Soc. Am. B 20, 554–559 (2003).

    Article  Google Scholar 

  43. Patra, D., Gregor, I. & Enderlein, J. Image analysis of defocused single molecule images for three-dimensional molecule orientation studies. J. Phys. Chem. A 108, 6836 (2004).

    Article  CAS  Google Scholar 

  44. Backer, A. S. & Moerner, W. E. Determining the rotational mobility of a single molecule from a single image: a numerical study. Opt. Express 23, 4255–4276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Isbaner, S. et al. Dead-time correction of fluorescence lifetime measurements and fluorescence lifetime imaging. Opt. Express 24, 9429–9445 (2016).

    Article  PubMed  Google Scholar 

  46. GWDG Project Management Service. https://projects.gwdg.de/projects/miet/repository/raw/MIET_GUI.zip?rev=ZIP

  47. Richter, R. P., Bérat, R. & Brisson, A. R. Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22, 3497–3505 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Meleard, P., Bagatolli, L. A. & Pott, T. Giant unilamellar vesicle electroformation: from lipid mixtures to native membranes under physiological conditions. Methods Enzymol. 465, 161–176 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.K. and A.G. are grateful to the Deutsche Forschungsgemeinschaft (DFG) for funding via project A06 of the Collaborative Research Centre SFB 860. J.E. acknowledges funding by the DFG under Germany’s Excellence Strategy—EXC 2067/1- 390729940, and financing by the European Research Council (ERC) via project ‘smMIET’ (grant agreement 884488) under the European Union’s Horizon 2020 research and innovation program.

Author information

Authors and Affiliations

Authors

Contributions

J.E. conceived the project and helped with data analysis; A.G., A.I.C. and N.K. performed experiments and analyzed the data; A.G. and J.E. wrote the manuscript with the input of all other authors.

Corresponding author

Correspondence to Jörg Enderlein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Yuval Garini and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Chizhik, A. I. et al. Nat. Photonics 8, 124–127 (2014): https://doi.org/10.1038/nphoton.2013.345

Karedla, N. et al. ChemPhysChem 15, 705–711 (2014): https://doi.org/10.1002/cphc.201300760

Ghosh, A. et al. Nat. Photonics 13, 860–865 (2019): https://doi.org/10.1038/s41566-019-0510-7

Supplementary information

Supplementary Information

Supplementary Notes 1–4 and Supplementary Fig. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Chizhik, A.I., Karedla, N. et al. Graphene- and metal-induced energy transfer for single-molecule imaging and live-cell nanoscopy with (sub)-nanometer axial resolution. Nat Protoc 16, 3695–3715 (2021). https://doi.org/10.1038/s41596-021-00558-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00558-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing