Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles

Abstract

Extracellular vesicles (EVs) are heterogeneous lipid containers with a complex molecular cargo comprising several populations with unique roles in biological processes. These vesicles are closely associated with specific physiological features, which makes them invaluable in the detection and monitoring of various diseases. EVs play a key role in pathophysiological processes by actively triggering genetic or metabolic responses. However, the heterogeneity of their structure and composition hinders their application in medical diagnosis and therapies. This diversity makes it difficult to establish their exact physiological roles, and the functions and composition of different EV (sub)populations. Ensemble averaging approaches currently employed for EV characterization, such as western blotting or ‘omics’ technologies, tend to obscure rather than reveal these heterogeneities. Recent developments in single-vesicle analysis have made it possible to overcome these limitations and have facilitated the development of practical clinical applications. In this review, we discuss the benefits and challenges inherent to the current methods for the analysis of single vesicles and review the contribution of these approaches to the understanding of EV biology. We describe the contributions of these recent technological advances to the characterization and phenotyping of EVs, examination of the role of EVs in cell-to-cell communication pathways and the identification and validation of EVs as disease biomarkers. Finally, we discuss the potential of innovative single-vesicle imaging and analysis methodologies using microfluidic devices, which promise to deliver rapid and effective basic and practical applications for minimally invasive prognosis systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic overview of the main SVA techniques discussed in this review.
Fig. 2: Schematic representation of endocytic and fusion pathways recently investigated using SVA techniques.
Fig. 3: Schematic overview of reviewed biomarkers discovered using SVA techniques.

References

  1. 1.

    Hooke, R. Micrographia: or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses. With Observations and Inquiries Thereupon (1665).

  2. 2.

    Die Altmann, R. Elementarorganismen und ihre Beziehungen zu den Zellen (von Veit, 1890).

  3. 3.

    van Leeuwenhoek, A. Opera Omnia, seu Arcana Naturae ope exactissimorum Microscopiorum detecta, experimentis variis comprobata, Epistolis ad varios illustres viros.

  4. 4.

    Wolf, P. The nature and significance of platelet products in human plasma. Br. J. Haematol. 13, 269–288 (1967).

    CAS  PubMed  Google Scholar 

  5. 5.

    Herr, D. R. et al. Ultrastructural characteristics of DHA-induced pyroptosis. Neuromolecular Med. https://doi.org/10.1007/s12017-019-08586-y (2020).

  6. 6.

    Patras, L. & Banciu, M. Intercellular crosstalk via extracellular vesicles in tumor milieu as emerging therapies for cancer progression. Curr. Pharm. Des. 25, 1980–2006 (2019).

    CAS  PubMed  Google Scholar 

  7. 7.

    Andaloussi, S. E. L., Mäger, I., Breakefield, X. O. & Wood, M. J. A. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347–357 (2013).

    Google Scholar 

  8. 8.

    Buzas, E. I., György, B., Nagy, G., Falus, A. & Gay, S. Emerging role of extracellular vesicles in inflammatory diseases. Nat. Rev. Rheumatol. 10, 356–364 (2014).

    CAS  PubMed  Google Scholar 

  9. 9.

    Panagopoulou, M. S., Wark, A. W., Birch, D. J. S. & Gregory, C. D. Phenotypic analysis of extracellular vesicles: a review on the applications of fluorescence. J. Extracell. Vesicles 9, 1710020 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Yáñez-Mó, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066 (2015).

    PubMed  Google Scholar 

  11. 11.

    Van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    PubMed  Google Scholar 

  12. 12.

    Nieuwland, R. & Sturk, A. Why do cells release vesicles? Thromb. Res. 125, S49–S51 (2010).

    CAS  PubMed  Google Scholar 

  13. 13.

    Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    CAS  PubMed  Google Scholar 

  14. 14.

    Anderson, H. C., Mulhall, D. & Garimella, R. Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. Lab. Investig. 90, 1549–1557 (2010).

    CAS  PubMed  Google Scholar 

  15. 15.

    Wiklander, O. P. B., Brennan, M., Lötvall, J., Breakefield, X. O. & Andaloussi, S. E. L. Advances in therapeutic applications of extracellular vesicles. Sci. Transl. Med. 11, 1–16 (2019).

    Google Scholar 

  16. 16.

    An, T. et al. Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J. Extracell. Vesicles 4, 27522 (2015).

    PubMed  Google Scholar 

  17. 17.

    Becker, A. et al. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30, 836–848 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Zhao, H. et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife 5, e10250 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Chiang, C. Y. & Chen, C. Toward characterizing extracellular vesicles at a single-particle level. J. Biomed. Sci. 26, 9 (2019).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Zhang, H. et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric-flow field-flow fractionation. Nat. Cell Biol. 20, 332–343 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Mathieu, M., Martin-Jaular, L., Lavieu, G. & Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019).

    CAS  PubMed  Google Scholar 

  23. 23.

    Tai, Y. L., Chen, K. C., Hsieh, J. T. & Shen, T. L. Exosomes in cancer development and clinical applications. Cancer Sci. 109, 2364–2374 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Willms, E., Cabañas, C., Mäger, I., Wood, M. J. A. & Vader, P. Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front. Immunol. 9, 738 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Van Der Pol, E. et al. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J. Thromb. Haemost. 8, 2596–2607 (2010).

    PubMed  Google Scholar 

  27. 27.

    Soung, Y. H., Ford, S., Zhang, V. & Chung, J. Exosomes in cancer diagnostics. Cancers (Basel) 9, 8 (2017).

    Google Scholar 

  28. 28.

    Puente-Massaguer, E., Lecina, M. & Gòdia, F. Application of advanced quantification techniques in nanoparticle-based vaccine development with the Sf9 cell baculovirus expression system. Vaccine 38, 1849–1859 (2020).

    CAS  PubMed  Google Scholar 

  29. 29.

    Pick, H., Alves, A. C. & Vogel, H. Single-vesicle assays using liposomes and cell-derived vesicles: from modeling complex membrane processes to synthetic biology and biomedical applications. Chem. Rev. 118, 8598–8654 (2018).

    CAS  PubMed  Google Scholar 

  30. 30.

    Tkach, M., Kowal, J. & Théry, C. Why the need and how to approach the functional diversity of extracellular vesicles. Philos. Trans. R. Soc. B Biol. Sci. 373, 20160479 (2018).

    Google Scholar 

  31. 31.

    Goñi, F. M. The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model. Biochim. Biophys. Acta 1838, 1467–1476 (2014).

    PubMed  Google Scholar 

  32. 32.

    Bhatia, V. K. et al. Amphipathic motifs in BAR domains are essential for membrane curvature sensing. EMBO J. 28, 3303–3314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Mathiasen, S. et al. Nanoscale high-content analysis using compositional heterogeneities of single proteoliposomes. Nat. Methods 11, 931–934 (2015).

    Google Scholar 

  34. 34.

    Brett, S. I. et al. Immunoaffinity based methods are superior to kits for purification of prostate derived extracellular vesicles from plasma samples. Prostate 77, 1335–1343 (2017).

    CAS  PubMed  Google Scholar 

  35. 35.

    Royo, F. et al. Different EV enrichment methods suitable for clinical settings yield different subpopulations of urinary extracellular vesicles from human samples. J. Extracell. Vesicles 5, 29497 (2016).

    PubMed  Google Scholar 

  36. 36.

    Ramirez, M. I. et al. Technical challenges of working with extracellular vesicles. Nanoscale 10, 881–906 (2018).

    CAS  PubMed  Google Scholar 

  37. 37.

    Sódar, B. W. et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci. Rep. 6, 24316 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Woo, J. R., Sharma, S. & Gimzewski, J. The role of isolation methods on a nanoscale surface structure and its effect on the size of exosomes. J. Circ. Biomark. 5, 11 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Takahashi, K., Yan, I. K., Kim, C., Kim, J. & Patel, T. Analysis of extracellular RNA by digital PCR. Front. Oncol. 4, 129 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Liu, Y. & Lu, Q. Extracellular vesicle microRNAs: biomarker discovery in various diseases based on RT-qPCR. Biomark. Med. 9, 791–805 (2015).

    PubMed  Google Scholar 

  41. 41.

    Giannopoulou, L., Zavridou, M., Kasimir-Bauer, S. & Lianidou, E. S. Liquid biopsy in ovarian cancer: the potential of circulating miRNAs and exosomes. Transl. Res. 205, 77–91 (2019).

    CAS  PubMed  Google Scholar 

  42. 42.

    Crocetti, E. Epidemiology of prostate cancer in Europe. Centre for Parliamentary Studies https://ec.europa.eu/jrc/en/publication/epidemiology-prostate-cancer-europe (2015).

  43. 43.

    Torrano, V. et al. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer. Curr. Opin. Pharmacol. 29, 47–53 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Heidenreich, A. et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent—update 2013. Eur. Urol. 65, 124–137 (2014).

    PubMed  Google Scholar 

  45. 45.

    Humphrey, P. A. Diagnosis of adenocarcinoma in prostate needle biopsy tissue. J. Clin. Pathol. 60, 35–42 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Shariat, S. F. & Roehrborn, C. G. Using biopsy to detect prostate cancer. Rev. Urol. 10, 262–280 (2008).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Clos-Garcia, M. et al. Metabolic alterations in urine extracellular vesicles are associated to prostate cancer pathogenesis and progression. J. Extracell. Vesicles 7, 1470442 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Höög, J. L. & Lötvall, J. Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J. Extracell. Vesicles 4, 28680 (2015).

    PubMed  Google Scholar 

  49. 49.

    Duijvesz, D. et al. Immuno-based detection of extracellular vesicles in urine as diagnostic marker for prostate cancer. Int. J. Cancer 137, 2869–2878 (2015).

    CAS  PubMed  Google Scholar 

  50. 50.

    Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Raposo, G. & Stahl, P. D. Extracellular vesicles: a new communication paradigm? Nat. Rev. Mol. Cell Biol. 20, 509–510 (2019).

    CAS  PubMed  Google Scholar 

  52. 52.

    Théry, C., Clayton, A., Amigorena, S. & Raposo, G. Isolation and characterization of exosomes from cell culture supernatants. in Current Protocols in Cell Biology https://doi.org/10.1002/0471143030.cb0322s30 (2006).

  53. 53.

    Giulietti, M. et al. Exploring small extracellular vesicles for precision medicine in prostate cancer. Front. Oncol. 8, 221 (2018).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Russell, A. E. et al. Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: an ISEV position paper arising from the ISEV membranes and EVs workshop. J. Extracell. Vesicles 8, 1684862 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Chen, C. et al. Isolation of a novel bacterial strain capable of producing abundant extracellular membrane vesicles carrying a single major cargo protein and analysis of its transport mechanism. Front. Microbiol. 10, 3001 (2020).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Szatanek, R. et al. The methods of choice for extracellular vesicles (EVs) characterization. Int. J. Mol. Sci. 18, 1153 (2017).

    PubMed Central  Google Scholar 

  57. 57.

    Tatischeff, I., Larquet, E., Falcon-Perez, J. M., Turpin, P.-Y. & Kruglik, S. G. Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and raman tweezers microspectroscopy. J. Extracell. Vesicles 1, 19179 (2012).

    Google Scholar 

  58. 58.

    Hyenne, V. et al. Studying the fate of tumor extracellular vesicles at high spatiotemporal resolution using the zebrafish embryo. Dev. Cell 48, 554–572.e7 (2019).

    CAS  PubMed  Google Scholar 

  59. 59.

    Tian, Q. et al. Nanoparticle counting by microscopic digital detection: selective quantitative analysis of exosomes via surface-anchored nucleic acid amplification. Anal. Chem. 90, 6556–6562 (2018).

    CAS  PubMed  Google Scholar 

  60. 60.

    Carney, R. P. et al. Multispectral optical tweezers for biochemical fingerprinting of CD9-positive exosome subpopulations. Anal. Chem. 89, 5357–5363 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Enciso-Martinez, A. et al. Synchronized Rayleigh and Raman scattering for the characterization of single optically trapped extracellular vesicles. Nanomedicine 24, 102109 (2020).

    CAS  PubMed  Google Scholar 

  62. 62.

    Stremersch, S. et al. Identification of individual exosome-like vesicles by surface enhanced raman spectroscopy. Small 12, 3292–3301 (2016).

    CAS  PubMed  Google Scholar 

  63. 63.

    Yuana, Y. et al. Cryo-electron microscopy of extracellular vesicles in fresh plasma. J. Extracell. Vesicles 2, 21494 (2013).

    Google Scholar 

  64. 64.

    Daaboul, G. G. et al. Digital detection of exosomes by interferometric imaging. Sci. Rep. 6, 37246 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Ridolfi, A. et al. AFM-based high-throughput nanomechanical screening of single extracellular vesicles. Anal. Chem. 92, 10274–10282 (2020).

    CAS  PubMed  Google Scholar 

  66. 66.

    Kim, S. Y., Khanal, D., Kalionis, B. & Chrzanowski, W. High-fidelity probing of the structure and heterogeneity of extracellular vesicles by resonance-enhanced atomic force microscopy infrared spectroscopy. Nat. Protoc. 14, 576–593 (2019).

    CAS  PubMed  Google Scholar 

  67. 67.

    Zong, S. et al. Single molecule localization imaging of exosomes using blinking silicon quantum dots. Nanotechnology 29, 065705 (2017).

    Google Scholar 

  68. 68.

    Filipe, V., Hawe, A. & Jiskoot, W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 27, 796–810 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Bachurski, D. et al. Extracellular vesicle measurements with nanoparticle tracking analysis—an accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J. Extracell. Vesicles 8, 1596016 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Rikkert, L. G. et al. Cancer-ID: toward identification of cancer by tumor-derived extracellular vesicles in blood. Front. Oncol. 10, 608 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Smith, Z. J. et al. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J. Extracell. Vesicles 4, 28533 (2015).

    PubMed  Google Scholar 

  72. 72.

    Carney, R. P. et al. Targeting tumor-associated exosomes with integrin-binding peptides. advanced biosystems. Physiol. Behav. 1, 1600038 (2017).

    Google Scholar 

  73. 73.

    Lee, W. et al. Label-free prostate cancer detection by characterization of extracellular vesicles using Raman spectroscopy. Anal. Chem. 90, 11290–11296 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Kruglik, S. G. et al. Raman tweezers microspectroscopy of circa 100 nm extracellular vesicles. Nanoscale 11, 1661–1679 (2019).

    CAS  PubMed  Google Scholar 

  75. 75.

    Dai, Y. et al. Combined morpho-chemical profiling of individual extracellular vesicles and functional nanoparticles without labels. Anal. Chem. 92, 5585–5594 (2020).

    CAS  PubMed  Google Scholar 

  76. 76.

    Enciso-Martinez, A. et al. Label-free identification and chemical characterisation of single extracellular vesicles and lipoproteins by synchronous Rayleigh and Raman scattering. J. Extracell. Vesicles 9, 1730134 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Lee, W., Lenferink, A. T. M., Otto, C. & Offerhaus, H. L. Classifying Raman spectra of extracellular vesicles based on convolutional neural networks for prostate cancer detection. J. Raman Spectrosc. 51, 293–300 (2020).

    CAS  Google Scholar 

  78. 78.

    Bryce, D. A., Kitt, J. P. & Harris, J. M. Confocal-Raman microscopy characterization of supported phospholipid bilayers deposited on the interior surfaces of chromatographic silica. J. Am. Chem. Soc. 140, 4071–4078 (2018).

    CAS  PubMed  Google Scholar 

  79. 79.

    Kitt, J. P., Bryce, D. A., Minteer, S. D. & Harris, J. M. Confocal Raman microscopy for in situ measurement of phospholipid-water partitioning into model phospholipid bilayers within individual chromatographic particles. Anal. Chem. 90, 7048–7055 (2018).

    CAS  PubMed  Google Scholar 

  80. 80.

    Penders, J. et al. Single particle automated Raman trapping analysis. Nat. Commun. 9, 4256 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Bour, A. et al. Lipid unsaturation properties govern the sensitivity of membranes to photoinduced oxidative stress. Biophys. J. 116, 910–920 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Collard, L., Sinjab, F. & Notingher, I. Raman spectroscopy study of curvature-mediated lipid packing and sorting in single lipid vesicles. Biophys. J. 117, 1589–1598 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Bryce, D. A., Kitt, J. P., Myres, G. J. & Harris, J. M. Confocal Raman microscopy investigation of phospholipid monolayers deposited on nitrile-modified surfaces in porous silica particles. Langmuir 36, 4071–4079 (2020).

    CAS  PubMed  Google Scholar 

  84. 84.

    Krafft, C. et al. A specific spectral signature of serum and plasma-derived extracellular vesicles for cancer screening. Nanomed. Nanotechnol., Biol. Med. 13, 835–841 (2017).

    CAS  Google Scholar 

  85. 85.

    Gualerzi, A. et al. Raman spectroscopy uncovers biochemical tissue-related features of extracellular vesicles from mesenchymal stromal cells. Sci. Rep. 7, 9820 (2017).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Gualerzi, A. et al. Raman spectroscopy as a quick tool to assess purity of extracellular vesicle preparations and predict their functionality. J. Extracell. Vesicles 8, 1568780 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Zhang, H., Silva, A. C., Zhang, W., Rutigliano, H. & Zhou, A. Raman spectroscopy characterization extracellular vesicles from bovine placenta and peripheral blood mononuclear cells. PLoS ONE 15, e0235214 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Morasso, C. F. et al. Raman spectroscopy reveals biochemical differences in plasma derived extracellular vesicles from sporadic amyotrophic lateral sclerosis patients. Nanomedicine 29, 102249 (2020).

    CAS  PubMed  Google Scholar 

  89. 89.

    Cialla, D., Pollok, S., Steinbrücker, C., Weber, K. & Popp, J. SERS-based detection of biomolecules. Nanophotonics 3, 383–411 (2014).

    CAS  Google Scholar 

  90. 90.

    Lee, C. et al. 3D plasmonic nanobowl platform for the study of exosomes in solution. Nanoscale 7, 9290–9297 (2015).

    CAS  PubMed  Google Scholar 

  91. 91.

    Fazio, B. et al. SERS detection of biomolecules at physiological pH via aggregation of gold nanorods mediated by optical forces and plasmonic heating. Sci. Rep. 6, 26952 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Park, J. et al. Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis. Anal. Chem. 89, 6695–6701 (2017).

    CAS  PubMed  Google Scholar 

  93. 93.

    Rojalin, T., Phong, B., Koster, H. & Carney, R. P. Nanoplasmonic approaches for sensitive detection and molecular characterization of extracellular vesicles. Front. Chem. 7, 729 (2019).

    Google Scholar 

  94. 94.

    Wang, J., Koo, K. M., Wang, Y. & Trau, M. Engineering state-of-the-art plasmonic nanomaterials for SERS-based clinical liquid biopsy applications. Adv. Sci. 6, 1900730 (2019).

    CAS  Google Scholar 

  95. 95.

    Pramanik, A. et al. Mixed-dimensional heterostructure material-based SERS for trace level identification of breast cancer-derived exosomes. ACS Omega 3, 16602–16611 (2020).

    Google Scholar 

  96. 96.

    Zabeo, D. et al. Exosomes purified from a single cell type have diverse morphology. J. Extracell. Vesicles 6, 1329476 (2017).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Orlov, I. et al. The integrative role of cryo electron microscopy in molecular and cellular structural biology. Biol. Cell 109, 81–93 (2017).

    CAS  PubMed  Google Scholar 

  98. 98.

    Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988).

    CAS  PubMed  Google Scholar 

  99. 99.

    Conde-Vancells, J. et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J. Proteome Res. 7, 5157–5166 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Zonneveld, M. I. et al. Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures. J. Extracell. Vesicles https://doi.org/10.3402/jev.v3.24215 (2014).

  101. 101.

    Cizmar, P. & Yuana, Y. Detection and characterization of extracellular vesicles by transmission and cryo-transmission electron microscopy. in Extracellular Vesicles: Methods and Protocols (eds. Kuo, W. P. & Shidong, J.) 221–232 (Springer, 2017).

  102. 102.

    Binnig, G., Quate, F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    CAS  PubMed  Google Scholar 

  103. 103.

    Sharma, S. et al. Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano 4, 1921–1926 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Parisse, P. et al. Atomic force microscopy analysis of extracellular vesicles. Eur. Biophys. J. 46, 813–820 (2017).

    CAS  PubMed  Google Scholar 

  105. 105.

    Creasey, R. et al. Atomic force microscopy-based antibody recognition imaging of proteins in the pathological deposits in pseudoexfoliation syndrome. Ultramicroscopy 111, 1055–1061 (2011).

    CAS  PubMed  Google Scholar 

  106. 106.

    Sebaihi, N., De Boeck, B., Yuana, Y., Nieuwland, R. & Pétry, J. Dimensional characterization of extracellular vesicles using atomic force microscopy. Meas. Sci. Technol. 28, 034006 (2017).

    Google Scholar 

  107. 107.

    Skliar, M. & Chernyshev, V. S. Imaging of extracellular vesicles by atomic force microscopy. J. Vis. Exp. https://doi.org/10.3791/59254 (2019).

  108. 108.

    Kim, S. Y., Khanal, D., Tharkar, P., Kalionis, B. & Chrzanowski, W. None of us is the same as all of us: Resolving the heterogeneity of extracellular vesicles using single-vesicle, nanoscale characterization with resonance enhanced atomic force microscope infrared spectroscopy (AFM-IR). Nanoscale Horiz. 3, 430–438 (2018).

    CAS  PubMed  Google Scholar 

  109. 109.

    Avci, O., Ünlü, N. L., Özkumur, A. Y. & Ünlü, M. S. Interferometric reflectance imaging sensor (IRIS)—a platform technology for multiplexed diagnostics and digital detection. Sensors 15, 17649–17665 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Trueb, J. T., Avci, O., Sevenler, D., Connor, J. H. & Ünlü, M. S. Robust visualization and discrimination of nanoparticles by interferometric imaging. IEEE J. Sel. Top. Quantum Electron. https://ieeexplore.ieee.org/document/7782781 (2017).

  111. 111.

    Daaboul, G. G. et al. Enhanced light microscopy visualization of virus particles from Zika virus to filamentous ebolaviruses. PLoS ONE 12, e0179728 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    van der Vlist, E. J., Nolte-’t Hoen, E. N. M., Stoorvogel, W., Arkesteijn, G. J. A. & Wauben, M. H. M. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat. Protoc. 7, 1311–1326 (2012).

    PubMed  Google Scholar 

  113. 113.

    Gomes, J. et al. Analytical considerations in nanoscale flow cytometry of extracellular vesicles to achieve data linearity. Thromb. Haemost. 118, 1612–1624 (2018).

    PubMed  Google Scholar 

  114. 114.

    Fish, K. N. Total internal reflection fluorescence (TIRF) microscopy. Curr. Protoc. Cytom. https://doi.org/10.1002/0471142956.cy1218s50 (2009).

  115. 115.

    Kudalkar, E. M., Davis, T. N. & Asbury, C. L. Single-molecule total internal reflection fluorescence microscopy. Cold Spring Harb. Protoc. 2016, pdb.top077800 (2016).

    PubMed Central  Google Scholar 

  116. 116.

    Axelrod, D. Chapter 7: total internal reflection fluorescence microscopy. Methods Cell Biol. 89, 169–221 (2008).

    CAS  PubMed  Google Scholar 

  117. 117.

    Ha, T. Single-molecule fluorescence resonance energy transfer. Methods 25, 78–86 (2001).

    CAS  PubMed  Google Scholar 

  118. 118.

    Arluison, V. & Wien, F. RNA Spectroscopy: Methods and Protocols (Springer, 2020).

  119. 119.

    Cerdán, L. et al. FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles. Nat. Photonics 6, 621–626 (2012).

    Google Scholar 

  120. 120.

    Rectenwald, J. et al. A general TR-FRET assay platform for high-throughput screening and characterizing inhibitors of methyl-lysine reader proteins. SLAS Discov. 24, 693–700 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Maurel, D. et al. Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat. Methods 5, 561–567 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Dao, T. P. T. et al. Mixing block copolymers with phospholipids at the nanoscale: from hybrid polymer/lipid wormlike micelles to vesicles presenting lipid nanodomains. Langmuir 33, 1705–1715 (2017).

    CAS  PubMed  Google Scholar 

  123. 123.

    Johnson, J. L. et al. Munc13-4 Is a Rab11-binding protein that regulates Rab11-positive vesicle trafficking and docking at the plasma membrane. J. Biol. Chem. 291, 3423–3438 (2016).

    CAS  PubMed  Google Scholar 

  124. 124.

    Gayrard, C. & Borghi, N. FRET-based molecular tension microscopy. Methods 94, 33–42 (2016).

    CAS  PubMed  Google Scholar 

  125. 125.

    Chen, C. et al. Visualization and intracellular dynamic tracking of exosomes and exosomal miRNAs using single molecule localization microscopy. Nanoscale 10, 5154–5162 (2018).

    CAS  PubMed  Google Scholar 

  126. 126.

    Oleksiuk, O. et al. Single-molecule localization microscopy allows for the analysis of cancer metastasis-specific mirna distribution on the nanoscale. Oncotarget 6, 44745–44757 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Dabrowska, S. et al. Imaging of extracellular vesicles derived from human bone marrow mesenchymal stem cells using fluorescent and magnetic labels. Int. J. Nanomed. 13, 1653–1664 (2018).

    CAS  Google Scholar 

  128. 128.

    Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R. & Hell, S. W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006).

    CAS  PubMed  Google Scholar 

  129. 129.

    Chen, C. et al. Imaging and intracellular tracking of cancer-derived exosomes using single-molecule localization-based super-resolution microscope. ACS Appl. Mater. Interfaces 8, 25825–25833 (2016).

    CAS  PubMed  Google Scholar 

  130. 130.

    Polanco, J. C., Li, C., Durisic, N., Sullivan, R. & Götz, J. Exosomes taken up by neurons hijack the endosomal pathway to spread to interconnected neurons. Acta Neuropathol. Commun. 6, 10 (2018).

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    CAS  Google Scholar 

  132. 132.

    Hell, S. W. Toward fluorescence nanoscopy. Nat. Biotechnol. 21, 1347–1355 (2003).

    CAS  Google Scholar 

  133. 133.

    Huang, B. Super-resolution optical microscopy: multiple choices. Curr. Opin. Chem. Biol. 14, 10–14 (2010).

    CAS  PubMed  Google Scholar 

  134. 134.

    Hess, S. T., Girirajan, T. P. K. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Nienhaus, K. & Nienhaus, G. U. Where do we stand with super-resolution optical microscopy? J. Mol. Biol. 428, 308–322 (2016).

    CAS  PubMed  Google Scholar 

  136. 136.

    Bachmann, M., Fiederling, F. & Bastmeyer, M. Practical limitations of superresolution imaging due to conventional sample preparation revealed by a direct comparison of CLSM, SIM and dSTORM. J. Microsc. 262, 306–315 (2016).

    CAS  PubMed  Google Scholar 

  137. 137.

    Witters, D., Knez, K., Ceyssens, F., Puers, R. & Lammertyn, J. Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab Chip 13, 2047–2054 (2013).

    CAS  PubMed  Google Scholar 

  138. 138.

    Gao, W., Li, X., Zeng, L. & Peng, T. Rapid isothermal detection assay: a probe amplification method for the detection of nucleic acids. Diagn. Microbiol. Infect. Dis. 60, 133–141 (2008).

    CAS  PubMed  Google Scholar 

  139. 139.

    Jia, S. et al. Emerging technologies in extracellular vesicle-based molecular diagnostics. Expert Rev. Mol. Diagn. 14, 307–321 (2014).

    CAS  PubMed  Google Scholar 

  140. 140.

    Chen, W. W. et al. BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol. Ther. Nucleic Acids 2, e109 (2013).

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Worst, T. S. et al. miR-10a-5p and miR-29b-3p as extracellular vesicle-associated prostate cancer detection markers. Cancers (Basel) 12, 43 (2020).

    CAS  Google Scholar 

  142. 142.

    Takahashi, K. et al. Circulating extracellular vesicle-encapsulated HULC is a potential biomarker for human pancreatic cancer. Cancer Sci. 111, 98–111 (2020).

    CAS  PubMed  Google Scholar 

  143. 143.

    Liu, C. et al. Single-exosome-counting immunoassays for cancer diagnostics. Nano Lett. 18, 4226–4232 (2018).

    CAS  PubMed  Google Scholar 

  144. 144.

    Diefenbach, R. J., Lee, J. H. & Rizos, H. Monitoring melanoma using circulating free DNA. Am. J. Clin. Dermatol. 20, 1–12 (2019).

    PubMed  Google Scholar 

  145. 145.

    Kong, L., Lee, C., Earhart, C. M., Cordovez, B. & Chan, J. W. A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles. Opt. Express 23, 6793 (2015).

    CAS  PubMed  Google Scholar 

  146. 146.

    Zong, S. et al. Facile detection of tumor-derived exosomes using magnetic nanobeads and SERS nanoprobes. Anal. Methods 8, 5001–5008 (2016).

    CAS  Google Scholar 

  147. 147.

    Lee, C., Carney, R., Lam, K. & Chan, J. W. SERS analysis of selectively captured exosomes using an integrin-specific peptide ligand. J. Raman Spectrosc. 48, 1771–1776 (2017).

    CAS  Google Scholar 

  148. 148.

    Tian, Y. F., Ning, C. F., He, F., Yin, B. C. & Ye, B. C. Highly sensitive detection of exosomes by SERS using gold nanostar@Raman reporter@nanoshell structures modified with a bivalent cholesterol-labeled DNA anchor. Analyst 143, 4915–4922 (2018).

    CAS  PubMed  Google Scholar 

  149. 149.

    Zhang, W. et al. Enabling sensitive phenotypic profiling of cancer-derived small extracellular vesicles using surface-enhanced raman spectroscopy nanotags. ACS Sens. 5, 764–771 (2020).

    CAS  PubMed  Google Scholar 

  150. 150.

    Schie, I. W. et al. High-throughput screening raman spectroscopy platform for label-free cellomics. Anal. Chem. 90, 2023–2030 (2018).

    CAS  PubMed  Google Scholar 

  151. 151.

    Xiong, Q. et al. Magnetic nanochain integrated microfluidic biochips. Nat. Commun. 9, 1743 (2018).

    PubMed  PubMed Central  Google Scholar 

  152. 152.

    Beekman, P. et al. Immuno-capture of extracellular vesicles for individual multi-modal characterization using AFM, SEM and Raman spectroscopy. Lab Chip 19, 2526–2536 (2019).

    CAS  PubMed  Google Scholar 

  153. 153.

    Rüger, J., Mondol, A. S., Schie, I. W., Popp, J. & Krafft, C. High-throughput screening Raman microspectroscopy for assessment of drug-induced changes in diatom cells. Analyst 144, 4488–4492 (2019).

    PubMed  Google Scholar 

  154. 154.

    Noble, J. M. et al. Direct comparison of optical and electron microscopy methods for structural characterization of extracellular vesicles. J. Struct. Biol. https://doi.org/10.1016/j.jsb.2020.107474 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Lian, H., He, S., Chen, C. & Yan, X. Flow cytometric analysis of nanoscale biological particles and organelles. Annu. Rev. Anal. Chem. 12, 389–409 (2019).

    CAS  Google Scholar 

  156. 156.

    Chukhchin, D. G., Bolotova, K., Sinelnikov, I., Churilov, D. & Novozhilov, E. Exosomes in the phloem and xylem of woody plants. Planta 251, 12 (2020).

    CAS  Google Scholar 

  157. 157.

    Plaut, J. S. et al. Quantitative atomic force microscopy provides new insight into matrix vesicle mineralization. Arch. Biochem. Biophys. 667, 14–21 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Arraud, N. et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J. Thromb. Haemost. 12, 614–627 (2014).

    CAS  PubMed  Google Scholar 

  159. 159.

    Bevers, E. M., Comfurius, P. & Zwaal, R. F. A. Changes in membrane phospholipid distribution during platelet activation. Biochim. Biophys. Acta 736, 57–66 (1983).

    CAS  PubMed  Google Scholar 

  160. 160.

    Fadok, V. A. et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207–2216 (1992).

    CAS  PubMed  Google Scholar 

  161. 161.

    Zwaal, R. F. A. & Schroit, A. J. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. J. Am. Soc. Hematol. 89, 333–340 (1997).

    Google Scholar 

  162. 162.

    Biró, É. et al. Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J. Thromb. Haemost. 1, 2561–2568 (2003).

    PubMed  Google Scholar 

  163. 163.

    Morel, O., Jesel, L., Freyssinet, J. M. & Toti, F. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler. Thromb. Vasc. Biol. 31, 15–26 (2011).

    CAS  PubMed  Google Scholar 

  164. 164.

    Emelyanov, A. et al. Cryo-electron microscopy of extracellular vesicles from cerebrospinal fluid. PLoS ONE 15, e0227949 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Yekula, A. et al. Large and small extracellular vesicles released by glioma cells in vitro and in vivo. J. Extracell. Vesicles 9, 1689784 (2020).

    CAS  PubMed  Google Scholar 

  166. 166.

    Thane, K. E., Davis, A. M. & Hoffman, A. M. Improved methods for fluorescent labeling and detection of single extracellular vesicles using nanoparticle tracking analysis. Sci. Rep. 9, 12295 (2019).

    PubMed  PubMed Central  Google Scholar 

  167. 167.

    Dragovic, R. A. et al. Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence nanoparticle tracking analysis. Methods 87, 64–74 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Koifman, N., Biran, I., Aharon, A., Brenner, B. & Talmon, Y. A direct-imaging cryo-EM study of shedding extracellular vesicles from leukemic monocytes. J. Struct. Biol. 198, 177–185 (2017).

    CAS  PubMed  Google Scholar 

  169. 169.

    LeClaire, M., Gimzewski, J. & Sharma, S. A review of the biomechanical properties of single extracellular vesicles. Nano Sel. https://doi.org/10.1002/nano.202000129 (2020).

    Article  Google Scholar 

  170. 170.

    Royo, F. et al. Differences in the metabolite composition and mechanical properties of extracellular vesicles secreted by hepatic cellular models. J. Extracell. Vesicles 8, 1575678 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Logozzi, M. et al. Microenvironmental pH and exosome levels interplay in human cancer cell lines of different histotypes. Cancers (Basel) 10, 370 (2018).

    CAS  Google Scholar 

  172. 172.

    Royo, F. et al. Transcriptomic profiling of urine extracellular vesicles reveals alterations of CDH3 in prostate cancer. Oncotarget 7, 6835–6846 (2016).

    PubMed  PubMed Central  Google Scholar 

  173. 173.

    Federici, C. et al. Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PLoS ONE 9, e88193 (2014).

    PubMed  PubMed Central  Google Scholar 

  174. 174.

    Oosthuyzen, W. et al. Quantification of human urinary exosomes by nanoparticle tracking analysis. J. Physiol. 591, 5833–5842 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Logozzi, M. et al. Increased PSA expression on prostate cancer exosomes in in vitro condition and in cancer patients. Cancer Lett. 403, 318–329 (2017).

    CAS  PubMed  Google Scholar 

  176. 176.

    Logozzi, M., Spugnini, E., Mizzoni, D., Di Raimo, R. & Fais, S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev. 38, 93–101 (2019).

    CAS  PubMed  Google Scholar 

  177. 177.

    Calorini, L., Peppicelli, S. & Bianchini, F. Extracellular acidity as favouring factor of tumor progression and metastatic dissemination. Exp. Oncol. 34, 79–84 (2012).

    CAS  PubMed  Google Scholar 

  178. 178.

    Huber, V. et al. Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin. Cancer Biol. 43, 74–89 (2017).

    CAS  PubMed  Google Scholar 

  179. 179.

    Padda, R. S. et al. Nanoscale flow cytometry to distinguish subpopulations of prostate extracellular vesicles in patient plasma. Prostate 79, 592–603 (2019).

    CAS  PubMed  Google Scholar 

  180. 180.

    Xian, Y., Zhou, M., Han, S., Yang, R. & Wang, Y. A FRET biosensor reveals free zinc deficiency in diabetic beta-cell vesicles. Chin. Chem. Lett. 31, 468–472 (2020).

    CAS  Google Scholar 

  181. 181.

    Nguyen, D. B. et al. Characterization of microvesicles released from human red blood cells. Cell. Physiol. Biochem. 38, 1085–1099 (2016).

    CAS  PubMed  Google Scholar 

  182. 182.

    Polanco, J. C., Scicluna, B. J., Hill, A. F. & Götz, J. Extracellular vesicles isolated from the brains of rTg4510 mice seed tau protein aggregation in a threshold-dependent manner. J. Biol. Chem. 291, 12445–12466 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Wang, Y. et al. The release and trans-synaptic transmission of Tau via exosomes. Mol. Neurodegener. 12, 5 (2017).

    PubMed  PubMed Central  Google Scholar 

  184. 184.

    Yang, J. E. et al. Complexity and ultrastructure of infectious extracellular vesicles from cells infected by non-enveloped virus. Sci. Rep. 10, 7939 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Santos, M. F. et al. VAMP-associated protein-A and oxysterol-binding protein–related protein 3 promote the entry of late endosomes into the nucleoplasmic reticulum. J. Biol. Chem. 293, 13834–13848 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Mannavola, F. et al. Tumor-derived exosomes promote the in vitro osteotropism of melanoma cells by activating the SDF-1/CXCR4/CXCR7 axis. J. Transl. Med. 17, 230 (2019).

    PubMed  PubMed Central  Google Scholar 

  187. 187.

    Sorkin, R. et al. Nanomechanics of extracellular vesicles reveals vesiculation pathways. Small 14, e1801650 (2018).

    PubMed  Google Scholar 

  188. 188.

    Vorselen, D. et al. The fluid membrane determines mechanics of erythrocyte extracellular vesicles and is softened in hereditary spherocytosis. Nat. Commun. 9, 4960 (2018).

    PubMed  PubMed Central  Google Scholar 

  189. 189.

    Böcking, T., Upadhyayula, S., Rapoport, I., Capraro, B. R. & Kirchhausen, T. Reconstitution of clathrin coat disassembly for fluorescence microscopy and single-molecule analysis. Methods Mol. Biol. 1847, 121–146 (2018).

    PubMed  PubMed Central  Google Scholar 

  190. 190.

    Mattheyses, A. L., Atkinson, C. E. & Simon, S. M. Imaging single endocytic events reveals diversity in clathrin, dynamin, and vesicle dynamics. Traffic 12, 1394–1406 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Van Lengerich, B., Rawle, R. J., Bendix, P. M. & Boxer, S. G. Individual vesicle fusion events mediated by lipid-anchored DNA. Biophys. J. 105, 409–419 (2013).

    PubMed  PubMed Central  Google Scholar 

  192. 192.

    Mattie, S., Kazmirchuk, T., Mui, J., Vali, H. & Brett, C. L. Visualization of SNARE-mediated organelle membrane hemifusion by electron microscopy. Methods Mol. Biol. 1860, 361–377 (2019).

    CAS  PubMed  Google Scholar 

  193. 193.

    Hu, Y., Tian, Z. & Diao, J. Single-molecule fluorescence measurement of SNARE-mediated vesicle fusion. in SNAREs: Methods and Protocols (ed. Fratti, R.) 335–344 (2019).

  194. 194.

    Lin, C. C. et al. Control of membrane gaps by synaptotagmin-Ca 2+ measured with a novel membrane distance ruler. Nat. Commun. 5, 5859 (2014).

    CAS  PubMed  Google Scholar 

  195. 195.

    Stratton, B. S. et al. Cholesterol increases the openness of SNARE-mediated flickering fusion pores. Biophys. J. 110, 1538–1550 (2016).

    PubMed  PubMed Central  Google Scholar 

  196. 196.

    Cao, H. et al. In vivo real-time imaging of extracellular vesicles in liver regeneration via aggregation-induced emission luminogens. ACS Nano 13, 3522–3533 (2019).

    CAS  PubMed  Google Scholar 

  197. 197.

    Lai, C. P. et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 8, 483–494 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. 198.

    Gangadaran, P., Hong, C. M. & Ahn, B. C. Current perspectives on in vivo noninvasive tracking of extracellular vesicles with molecular imaging. Biomed Res. Int. 2017, (2017).

  199. 199.

    Lai, C. P., Tannous, B. A. & Breakefield, X. O. Noninvasive in vivo monitoring of extracellular vesicles. in. Methods Mol. Biol. 1098, 249–258 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. 200.

    Van Der Vos, K. E. et al. Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro. Oncol. 18, 58–69 (2016).

    PubMed  Google Scholar 

  201. 201.

    Ricklefs, F. L. et al. Imaging flow cytometry facilitates multiparametric characterization of extracellular vesicles in malignant brain tumours. J. Extracell. Vesicles 8, 1588555 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. 202.

    Lai, C. P. et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat. Commun. 6, 7029 (2015).

    CAS  PubMed  Google Scholar 

  203. 203.

    Verweij, F. J., Hyenne, V., Van Niel, G. & Goetz, J. G. Extracellular vesicles: catching the light in zebrafish. Trends Cell Biol. 29, 770–776 (2019).

    CAS  PubMed  Google Scholar 

  204. 204.

    Kobayashi-Sun, J. et al. Uptake of osteoblast-derived extracellular vesicles promotes the differentiation of osteoclasts in the zebrafish scale. Commun. Biol. 3, 190 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. 205.

    Sung, B. H. et al. A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells. Nat. Commun. 11, 2092 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. 206.

    Clos-Garcia, M. et al. Gut microbiome and serum metabolome analyses identify molecular biomarkers and altered glutamate metabolism in fibromyalgia. EBioMedicine 46, 499–511 (2019).

    PubMed  PubMed Central  Google Scholar 

  207. 207.

    Roman-Canal, B. et al. EV-associated miRNAs from peritoneal lavage are a source of biomarkers in endometrial cancer. Cancers (Basel). 11, 839 (2019).

    CAS  PubMed Central  Google Scholar 

  208. 208.

    Tian, Y. et al. Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry. ACS Nano 12, 671–680 (2018).

    CAS  PubMed  Google Scholar 

  209. 209.

    Clos-Garcia, M. et al. Integrative analysis of fecal metagenomics and metabolomics in colorectal cancer. Cancers (Basel) 12, 1142 (2020).

    CAS  Google Scholar 

  210. 210.

    Royo, F. & Falcon-Perez, J. M. Liver extracellular vesicles in health and disease. J. Extracell. Vesicles https://doi.org/10.3402/jev.v1i0.18825 (2012).

  211. 211.

    He, D. et al. Total internal reflection-based single-vesicle in situ quantitative and stoichiometric analysis of tumor-derived exosomal microRNAs for diagnosis and treatment monitoring. Theranostics 9, 4494–4507 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. 212.

    Murakami, Y. et al. Comprehensive miRNA expression analysis in peripheral blood can diagnose liver disease. PLoS ONE 7, e48366 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. 213.

    Pang, B. et al. Extracellular vesicles: the next generation of biomarkers for liquid biopsy-based prostate cancer diagnosis. Theranostics 10, 2309–2326 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. 214.

    Vlaeminck-Guillem, V. Extracellular vesicles in prostate cancer carcinogenesis, diagnosis, and management. Front. Oncol. 8, 222 (2018).

    PubMed  PubMed Central  Google Scholar 

  215. 215.

    Mateo, L., Guitart-Pla, O., Duran-Frigola, M. & Aloy, P. Exploring the OncoGenomic Landscape of cancer. Genome Med. 10, 61 (2018).

    PubMed  PubMed Central  Google Scholar 

  216. 216.

    Joncas, F. H. et al. Plasma extracellular vesicles as phenotypic biomarkers in prostate cancer patients. Prostate 79, 1767–1776 (2019).

    CAS  PubMed  Google Scholar 

  217. 217.

    Carlsson, J. et al. Validation of suitable endogenous control genes for expression studies of miRNA in prostate cancer tissues. Cancer Genet. Cytogenet. 202, 71–75 (2010).

    CAS  PubMed  Google Scholar 

  218. 218.

    Schaefer, A. et al. Suitable reference genes for relative quantification of miRNA expression in prostate cancer. Exp. Mol. Med. 42, 749–758 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. 219.

    Haka, A. S. et al. Diagnosing breast cancer by using Raman spectroscopy. Proc. Natl Acad. Sci. USA 102, 12371–12376 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. 220.

    Haka, A. S. et al. Diagnosing breast cancer using Raman spectroscopy: prospective analysis. J. Biomed. Opt. 14, 054023 (2009).

    PubMed  PubMed Central  Google Scholar 

  221. 221.

    Notarangelo, M. et al. Ultrasensitive detection of cancer biomarkers by nickel-based isolation of polydisperse extracellular vesicles from blood. EBioMedicine 43, 114–126 (2019).

    PubMed  PubMed Central  Google Scholar 

  222. 222.

    Melo, S. A. et al. Glypican1 identifies cancer exosomes and facilitates early detection of cancer. Nature 523, 177–182 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. 223.

    Biggs, C. N. et al. Prostate extracellular vesicles in patient plasma as a liquid biopsy platform for prostate cancer using nanoscale flow cytometry. Oncotarget 7, 8839–8849 (2016).

    PubMed  PubMed Central  Google Scholar 

  224. 224.

    Cannon, D. M., Winograd, J. N. & Ewing, A. G. Quantitative chemical analysis of single cells. Annu. Rev. Biophys. Biomol. Struct. 29, 239–263 (2000).

    CAS  PubMed  Google Scholar 

  225. 225.

    Li, X., Dunevall, J. & Ewing, A. G. Quantitative chemical measurements of vesicular transmitters with electrochemical cytometry. Acc. Chem. Res. 49, 2347–2354 (2016).

    CAS  PubMed  Google Scholar 

  226. 226.

    Li, X., Dunevall, J., Ren, L. & Ewing, A. G. Mechanistic aspects of vesicle opening during analysis with vesicle impact electrochemical cytometry. Anal. Chem. 89, 9416–9423 (2017).

    CAS  PubMed  Google Scholar 

  227. 227.

    Ranjbari, E. et al. Direct measurement of total vesicular catecholamine content with electrochemical microwell arrays. Anal. Chem. 92, 11325–11331 (2020).

    CAS  PubMed  Google Scholar 

  228. 228.

    Dunevall, J., Majdi, S., Larsson, A. & Ewing, A. Vesicle impact electrochemical cytometry compared to amperometric exocytosis measurements. Curr. Opin. Electrochem 5, 85–91 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. 229.

    Li, X., Majdi, S., Dunevall, J., Fathali, H. & Ewing, A. G. Quantitative measurements of transmitters in vesicles one at a time in single cell cytoplasm with nano-tip electrodes. Angew. Chem. Int. Ed. Engl. 54, 11978–11982 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. 230.

    Li, X., Dunevall, J. & Ewing, A. G. Electrochemical quantification of transmitter concentration in single nanoscale vesicles isolated from PC12 cells. Faraday Discuss 210, 353–364 (2018).

    CAS  PubMed  Google Scholar 

  231. 231.

    Ren, L. et al. Zinc regulates chemical-transmitter storage in nanometer vesicles and exocytosis dynamics as measured by amperometry. Angew. Chem. Int. Ed. Engl. 56, 4970–4975 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. 232.

    Li, X., Dunevall, J. & Ewing, A. G. Using single-cell amperometry to reveal how cisplatin treatment modulates the release of catecholamine transmitters during exocytosis. Angew. Chem. 128, 9187–9190 (2016).

    Google Scholar 

  233. 233.

    Zupanc, J., Bas, E. & Erdogmus, D. Analysis of lipid vesicle populations from microscopy video sequences. 2010 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC’10 5050–5053 https://doi.org/10.1109/IEMBS.2010.5626223 (2010)

  234. 234.

    Barriere, H. & Lukacs, G. L. Analysis of endocytic trafficking by single-cell fluorescence ratio imaging. Curr. Protoc. Cell Biol. https://doi.org/10.1002/0471143030.cb1513s40 (2008)

  235. 235.

    Chen, T. et al. Microwave biosensor dedicated to the dielectric spectroscopy of a single alive biological cell in its culture medium. in Microwave Symposium Digest (IMS), 2013 IEEE MTT-S International (2013).

  236. 236.

    Chen, W., Dubuc, D. & Grenier, K. Parametric study of a microwave sensor dedicated to the dielectric spectroscopy of single particles and biological cells. in 2015 European Microwave Conference (EuMC 2015) 829–832 (2015).

  237. 237.

    Chen, W., Dubuc, D. & Grenier, K. Impact of sensor metal thickness on microwave spectroscopy sensitivity for individual particles and biological cells analysis. in 2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS) 81–83 (2016).

  238. 238.

    Zhang, M. et al. Electrically controlled tunable broadband interferometric dielectric spectroscopy: groundwork for single cell analysis. in 2019 49th European Microwave Conference (EuMC) 650–653 (2019).

  239. 239.

    Cui, Y. et al. Analyzing single giant unilamellar vesicles with a slotline-based RF nanometer sensor. IEEE Trans. Microw. Theory Tech. 64, 1339–1347 (2016).

    PubMed  PubMed Central  Google Scholar 

  240. 240.

    Wu, M. et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc. Natl Acad. Sci. USA 114, 10584–10589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. 241.

    Ku, A. et al. Acoustic enrichment of extracellular vesicles from biological fluids. Anal. Chem. 90, 8011–8019 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. 242.

    Ku, A. et al. A urinary extracellular vesicle microRNA biomarker discovery pipeline; from automated extracellular vesicle enrichment by acoustic trapping to microRNA sequencing. PLoS ONE 14, e0217507 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. 243.

    Carter, E. P. et al. Visualizing Ebolavirus particles using single-particle interferometric reflectance imaging sensor (SP-IRIS). in Ebolaviruses: Methods and Protocols (eds. Groseth, A. & Hoenen, T.) 373–393 (Springer, 2017).

  244. 244.

    Ünlü, N. L., Kanik, F. E., Seymour, E., Connor, J. H. & Ünlü, M. S. DNA-directed antibody immobilization for robust protein microarrays: application to single particle detection DNA-directed antibody immobilization. in Biosensors and Biodetection: Methods and Protocols (eds. Rasooly, A. & Prickril, B.) 187–206 (Springer, 2017).

  245. 245.

    Akagi, T. et al. On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells. PLoS ONE 10, e0123603 (2015).

    PubMed  PubMed Central  Google Scholar 

  246. 246.

    Friedrich, R. et al. A nano flow cytometer for single lipid vesicle analysis. Lab Chip 17, 830–841 (2017).

    CAS  PubMed  Google Scholar 

  247. 247.

    Obeid, S. et al. NanoBioAnalytical characterization of extracellular vesicles in 75-nm nanofiltered human plasma for transfusion: a tool to improve transfusion safety. Nanomedicine 20, 10197 (2019).

    Google Scholar 

  248. 248.

    Yokota, S. et al. Extracellular vesicles nanoarray technology: immobilization of individual extracellular vesicles on nanopatterned polyethylene glycol-lipid conjugate brushes. PLoS ONE 14, e0224091 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. 249.

    Ji, Y. et al. Multiplexed profiling of single-cell extracellular vesicles secretion. Proc. Natl Acad. Sci. USA 116, 5979–5984 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. 250.

    Bai, Y. et al. Absolute quantification and analysis of extracellular vesicle lncRNAs from the peripheral blood of patients with lung cancer based on multi-colour fluorescence chip-based digital PCR. Biosens. Bioelectron. 142, 111523 (2019).

    CAS  PubMed  Google Scholar 

  251. 251.

    Akagi, T., Kato, K., Hanamura, N., Kobayashi, M. & Ichiki, T. Evaluation of desialylation effect on zeta potential of extracellular vesicles secreted from human prostate cancer cells by on-chip microcapillary electrophoresis. Jpn. J. Appl. Phys. 53, 06JL01 (2014).

    CAS  Google Scholar 

  252. 252.

    Weber, A., Wehmeyer, J. C., Schmidt, V., Lichtenberg, A. & Akhyari, P. Rapid fluorescence-based characterization of single extracellular vesicles in human blood with nanoparticle-tracking analysis. J. Vis. Exp. https://doi.org/10.3791/58731 (2019).

  253. 253.

    Marku, A. et al. The LRRK2 N-terminal domain influences vesicle trafficking: impact of the E193K variant. Sci. Rep. 10, 3799 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors of this review were supported by funds from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 860303. We thank MINECO for the TenTaCles (Spanish Excellence Network in Exosomes) and the Severo Ochoa Excellence Accreditation (SEV-2016-0644). This project has received funding from the Spanish Ministry of Economy and Competitiveness MINECO (RTI2018-094969-B-I00).

Author information

Affiliations

Authors

Contributions

All of the authors wrote, edited and discussed this review.

Corresponding authors

Correspondence to Guillermo Bordanaba-Florit or Juan M. Falcón-Pérez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Paolo Bergese, Cees Otto and Frederik Johannes Verweij for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Kruglik, S. G. et al. Nanoscale 11, 1661–1679 (2019): https://doi.org/10.1039/C8NR04677H

Royo, F. et al. J. Extracell. Vesicles 8, 1575678 (2019): https://doi.org/10.1080/20013078.2019.1575678

Tatischeff, I., Larquet, E., Falcon-Perez, J. M., Turpin, P.-Y. & Kruglik, S. G. J. Extracell. Vesicles 1, 19179 (2012): https://doi.org/10.3402/jev.v1i0.19179

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bordanaba-Florit, G., Royo, F., Kruglik, S.G. et al. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat Protoc 16, 3163–3185 (2021). https://doi.org/10.1038/s41596-021-00551-z

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links