Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Raman spectroscopy for real-time and in situ monitoring of mechanochemical milling reactions


Solid-state milling has emerged as an alternative, sustainable approach for preparing virtually all classes of compounds and materials. In situ reaction monitoring is essential to understanding the kinetics and mechanisms of these reactions, but it has proved difficult to use standard analytical techniques to analyze the contents of the closed, rapidly moving reaction chamber (jar). Monitoring by Raman spectroscopy is an attractive choice, because it allows uninterrupted data collection from the outside of a translucent milling jar. It complements the already established in situ monitoring based on powder X-ray diffraction, which has limited accessibility to the wider research community, because it requires a synchrotron X-ray source. The Raman spectroscopy monitoring setup used in this protocol consists of an affordable, small portable spectrometer, a laser source and a Raman probe. Translucent reaction jars, most commonly made from a plastic material, enable interaction of the laser beam with the solid sample residing inside the closed reaction jar and collection of Raman-scattered photons while the ball mill is in operation. Acquired Raman spectra are analyzed using commercial or open-source software for data analysis (e.g., MATLAB, Octave, Python, R). Plotting the Raman spectra versus time enables qualitative analysis of reaction paths. This is demonstrated for an example reaction: the formation in the solid state of a cocrystal between nicotinamide and salicylic acid. A more rigorous data analysis can be achieved using multivariate analysis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: 2D time-resolved Raman spectra of NG cocrystals formation between na and sal.
Fig. 2: Schematic representation of the protocol’s flow.
Fig. 3: Reaction profile obtained by plotting intensities at the peak maximum versus time for NG of na and sal.
Fig. 4: Equipment setup.
Fig. 5: Equipment setup.
Fig. 6: Equipment settings.
Fig. 7: Understanding the results window.
Fig. 8: Subtracting background.
Fig. 9: Equipment setup.
Fig. 10: Changing parameters.
Fig. 11: Used icons on the secondary toolbar highlighted in the OceanView software window.
Fig. 12: Raman spectrum of silicon.
Fig. 13: Adjusting the x-axis.
Fig. 14: Reaction setup.
Fig. 15: Results from an optimization experiment.
Fig. 16: Screenshot—how to use the software.
Fig. 17: Annotation of the GUI for GNU Octave.

Data availability

The dataset generated during the current study is available in the Supplementary Information and at the GitHub repository (

Code availability

All the in-house written scripts used for analysis are available in the Supplementary Information and at the GitHub repository (


  1. 1.

    Do, J–L. & Friščić, T. Mechanochemistry: a force of synthesis. ACS Cent. Sci. 3, 13–19 (2017).

    CAS  PubMed  Google Scholar 

  2. 2.

    Frišcic, T., Mottillo, C. & Titi, H. M. Mechanochemistry for synthesis. Angew. Chem. Int. Ed. 59, 1018–1029 (2020).

    Google Scholar 

  3. 3.

    Wiggins, K. M., Brantely, J. N. & Bielawski, C. W. Methods for activating and characterizing mechanically responsive polymers. Chem. Soc. Rev. 42, 7130–7147 (2013).

    CAS  PubMed  Google Scholar 

  4. 4.

    Beyer, M. K. & Clausen-Schaumann, H. Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev. 105, 2921–2948 (2005).

    CAS  PubMed  Google Scholar 

  5. 5.

    Takacs, L. The historical development of mechanochemistry. Chem. Soc. Rev. 42, 7649–7659 (2013).

    CAS  PubMed  Google Scholar 

  6. 6.

    Do, J–L. & Friščić, T. Chemistry 2.0: developing a new, solvent-free system of chemical synthesis based on mechanochemistry. Synlett 28, 2066–2092 (2017).

    CAS  Google Scholar 

  7. 7.

    Andersen, J. & Mack, J. Mechanochemistry and organic synthesis: from mystical to practical. Green. Chem. 20, 1435–1443 (2018).

    CAS  Google Scholar 

  8. 8.

    Wang, G. –W. Mechanochemical organic synthesis. Chem. Soc. Rev. 42, 7668–7700 (2013).

    CAS  PubMed  Google Scholar 

  9. 9.

    Boldyreva, E. Mechanochemistry of inorganic and organic systems: what is similar, what is different? Chem. Soc. Rev. 42, 7719–7738 (2013).

    CAS  PubMed  Google Scholar 

  10. 10.

    Šepelák, V., Düvel, A., Wilkening, M., Becker, K.-D. & Heitjans, P. Mechanochemical reactions and syntheses of oxides. Chem. Soc. Rev. 42, 7507–7520 (2013).

    PubMed  Google Scholar 

  11. 11.

    Beillard, A., Bantreil, X., Mètro, T.-X., Martinez, J. & Lamaty, F. Alternative technologies that facilitate access to discrete metal complexes. Chem. Rev. 119, 7529–7609 (2019).

    CAS  PubMed  Google Scholar 

  12. 12.

    Rightmire, N. R. & Hanusa, T. P. Advances in organometallic synthesis with mechanochemical methods. Dalton Trans. 45, 2352–2362 (2016).

    CAS  PubMed  Google Scholar 

  13. 13.

    Friščić, T. Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal-organic frameworks. Chem. Soc. Rev. 41, 3493–3510 (2012).

    PubMed  Google Scholar 

  14. 14.

    Hasa, D., Schneider Rauber, G., Voinovich, D. & Jones, W. Cocrystal formation through mechanochemistry: from neat and liquid-assisted grinding to polymer-assisted grinding. Angew. Chem. Int. Ed. 54, 7371–7375 (2015).

    CAS  Google Scholar 

  15. 15.

    Stolar, T. & Užarević, K. Mechanochemistry: an efficient and versatile toolbox for synthesis, transformation, and functionalization of porous metal-organic frameworks. CrystEngComm 22, 4511–4525 (2020).

    CAS  Google Scholar 

  16. 16.

    Porcheddu, A., Colacino, E., De Luca, L. & Delogu, F. Metal-mediated and metal-catalyzed reactions under mechanochemical conditions. ACS Catal. 10, 8344–8394 (2020).

    CAS  Google Scholar 

  17. 17.

    Hernández, J. G., Ardila-Fierro, K. J., Crawford, D., James, S. L. & Bolm, C. Mechanoenzymatic peptide and amide bond formation. Green. Chem. 19, 2620–2625 (2017).

    Google Scholar 

  18. 18.

    Tan, D., Loots, L. & Friščić, T. Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs). Chem. Comunn 52, 7760–7781 (2016).

    CAS  Google Scholar 

  19. 19.

    Colacino, E., Porcheddu, A., Charnay, C. & Delogu, F. From enabling technologies to medicinal mechanochemistry: an eco-friendly access to hydantoin-based active pharmaceutical ingredients. React. Chem. Eng. 4, 1179–1188 (2019).

    CAS  Google Scholar 

  20. 20.

    Anastas, P. & Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010).

    CAS  PubMed  Google Scholar 

  21. 21.

    Gomolón-Bel, F. Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable. Chem. Int. 41, 12–17 (2019).

    Google Scholar 

  22. 22.

    Baláž, P. et al. Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev. 42, 7571–7637 (2013).

    PubMed  Google Scholar 

  23. 23.

    Mulas, G., Loiselle, S., Schiffini, L. & Cocco, G. The mechanochemical self-propagating reaction between hexachlorobenzene and calcium hydride. J. Solid State Chem. 129, 263–270 (1997).

    CAS  Google Scholar 

  24. 24.

    Doppiu, S., Schultz, L. & Gutfleisch, O. In situ pressure and temperature monitoring during the conversion of Mg into MgH2 by high-pressure reactive ball milling. J. Alloy. Compd. 427, 204–208 (2007).

    CAS  Google Scholar 

  25. 25.

    Troschke, E., Grätz, S., Lübken, T. & Borchardt, L. Mechanochemical Friedel–Crafts alkylation – a sustainable pathway towards porous organic. Polym. Angew. Chem. Int. Ed. 56, 6859–6863 (2017).

    CAS  Google Scholar 

  26. 26.

    Friščić, T., Childs, S. L., Rizvi, S. A. A. & Jones, W. The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm 11, 418–426 (2009).

    Google Scholar 

  27. 27.

    Bowmaker, G. A. Solvent-assisted mechanochemistry. Chem. Commun. 49, 334–348 (2013).

    CAS  Google Scholar 

  28. 28.

    Friščić, T. et al. Ion- and liquid-assisted grinding: improved mechanochemical synthesis of metal–organic frameworks reveals salt inclusion and anion templating. Angew. Chem. Int. Ed. 49, 712–715 (2010).

    Google Scholar 

  29. 29.

    Hasa, D., Carlino, E. & Jones, W. Polymer-assisted grinding, a versatile method for polymorph control of cocrystallization. Crys. Growth Des. 16, 1772–1779 (2016).

    CAS  Google Scholar 

  30. 30.

    Mukherjee, A., Rogers, R. D. & Myerson, A. S. Cocrystal formation by ionic liquid-assisted grinding: case study with cocrystals of caffeine. CrystEngComm 20, 3817–3821 (2018).

    CAS  Google Scholar 

  31. 31.

    Mørup, S., Jiang, J. Z., Bødker, F. & Horsewell, A. Crystal growth and the steady-state grain size during high-energy ball-milling. Europhys. Lett. 56, 441–446 (2001).

    Google Scholar 

  32. 32.

    Delogu, F. & Takacs, L. Information on the mechanism of mechanochemical reaction from detailed studies of the reaction kinetics. J. Mater. Sci. 53, 13331–13342 (2018).

    CAS  Google Scholar 

  33. 33.

    Ma, X., Yuan, W., Bell, S. E. J. & James, S. L. Better understanding of mechanochemical reactions: Raman monitoring reveals surprisingly simple pseudo-fluid model for a ball milling reaction. Chem. Commun. 50, 1585–1587 (2014).

    CAS  Google Scholar 

  34. 34.

    Tröbs, L. & Emmerling, F. Mechanochemical synthesis and characterisation of cocrystals and metal organic compounds. Faraday Discuss. 170, 109–119 (2014).

    PubMed  Google Scholar 

  35. 35.

    Rehder, S. et al. Investigation of the formation process of two piracetam cocrystals during grinding. Pharmaceutics 3, 706–722 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Hutchings, B. P., Crawford, D. E., Gao, L., Hu, P. & James, S. L. Feedback kinetics in mechanochemistry: the importance of cohesive states. Angew. Chem. Int. Ed. 56, 15252–15256 (2017).

    CAS  Google Scholar 

  37. 37.

    Belenguer, A. M., Lampronti, G. I., Cruz-Cabeza, A. J., Hunter, C. A. & Sanders, J. K. M. Solvation and surface effects on polymorph stabilities at the nanoscale. Chem. Sci. 7, 6617–6627 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Belenguer, A. M., Lampronti, G. I., Wales, D. J. & Sanders, J. K. M. Direct observation of intermediates in a thermodynamically controlled solid-state dynamic covalent reaction. J. Am. Chem. Soc. 136, 16156–16166 (2014).

    CAS  PubMed  Google Scholar 

  39. 39.

    Štrukil, V. et al. Towards an environmentally-friendly laboratory: dimensionality and reactivity in the mechanosynthesis of metal–organic compounds. Chem. Commun. 46, 9191–9193 (2010).

    Google Scholar 

  40. 40.

    Cliffe, M. J., Mottillo, C., Stein, R. S., Bucar, D.-K. & Frišcic, T. Accelerated aging: a low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal-organic materials. Chem. Sci. 3, 2495–2500 (2012).

    CAS  Google Scholar 

  41. 41.

    Hammerer, F. et al. Solvent-free enzyme activity: quick, high-yielding mechanoenzymatic hydrolysis of cellulose into glucose. Angew. Chem. Int. Ed. 57, 2621–2624 (2018).

    CAS  Google Scholar 

  42. 42.

    Belenguer, A. M., Michalchuk, A. A. L., Lampronti, G. I. & Sanders, J. K. M. Understanding the unexpected effect of frequency on the kinetics of a covalent reaction under ball-milling conditions. Beilstein J. Org. Chem. 15, 1226–1235 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Katsenis, A. D. et al. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nat. Commun. 6, 6662 (2015).

    CAS  PubMed  Google Scholar 

  44. 44.

    Krusenbaum, A., Grätz, S., Bimmermann, S., Hutscha, S. & Borchardt, L. The mechanochemical Scholl reaction as a versatile synthesis tool for the solvent-free generation of microporous polymers. RSC Adv. 10, 25509–25516 (2020).

    CAS  Google Scholar 

  45. 45.

    Brekalo, I. et al. Manometric real-time studies of the mechanochemical synthesis of zeolitic imidazolate frameworks. Chem. Sci. 11, 2141–2147 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Grätz, S. et al. The mechanochemical Scholl reaction—a solvent-free and versatile graphitization tool. Chem. Commun. 54, 5307–5310 (2018).

    Google Scholar 

  47. 47.

    Friščić, T. et al. Real-time and in situ monitoring of mechanochemical milling reactions. Nat. Chem. 5, 66–73 (2013).

    PubMed  Google Scholar 

  48. 48.

    Halasz, I. et al. In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction. Nat. Protoc. 8, 1718–1729 (2013).

    PubMed  Google Scholar 

  49. 49.

    Halasz, I. et al. Quantitative in situ and real-time monitoring of mechanochemical reactions. Faraday Discuss. 170, 203–221 (2014).

    CAS  PubMed  Google Scholar 

  50. 50.

    Gracin, D., Štrukil, V., Frišcic, T., Halasz, I. & Užarevic, K. Laboratory real-time and in situ monitoring of mechanochemical milling reactions by Raman spectroscopy. Angew. Chem. Int. Ed. 53, 6193–6197 (2014).

    CAS  Google Scholar 

  51. 51.

    Juribašić, M., Užarević, K., Gracin, D. & Ćurić, M. Mechanochemical C–H bond activation: rapid and regioselective double cyclopalladation monitored by in situ Raman spectroscopy. Chem. Commun. 50, 10287–10290 (2014).

    Google Scholar 

  52. 52.

    Simon, L. L. et al. Assessment of recent process analytical technology (PAT) trends: a multiauthor review. Org. Process Res. Dev. 19, 3–62 (2015).

    CAS  Google Scholar 

  53. 53.

    Esmonde-White, K. A., Cuellar, M., Uerpmann, C., Lenain, B. & Lewis, I. R. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal. Bioanal. Chem. 409, 637–649 (2017).

    CAS  PubMed  Google Scholar 

  54. 54.

    Pataki, H. et al. Implementation of Raman signal feedback to perform controlled crystallization of carvedilol. Org. Process Res. Dev. 17, 493–499 (2012).

    Google Scholar 

  55. 55.

    Csontos, I. et al. Feedback control of oximation reaction by inline Raman spectroscopy. Org. Process Res. Dev. 19, 189–195 (2015).

    CAS  Google Scholar 

  56. 56.

    De Beer, T. et al. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int. J. Pharm. 417, 32–47 (2011).

    PubMed  Google Scholar 

  57. 57.

    Pelletier, M. J. Quantitative analysis using Raman spectrometry. Appl. Spectrosc. 57, 20A–42A (2003).

    CAS  PubMed  Google Scholar 

  58. 58.

    Lisac, K. et al. Halogen-bonded cocrystallization with phosphorus, arsenic and antimony acceptors. Nat. Commun. 10, 61 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Batzdorf, L., Fischer, F., Wilke, M., Wenzel, K.-J. & Emmerling, F. Direct in situ investigation of milling reactions using combined x-ray diffraction and Raman spectroscopy. Angew. Chem. Int. Ed. 54, 1799–1802 (2015).

    CAS  Google Scholar 

  60. 60.

    Lukin, S. et al. Tandem in situ monitoring for quantitative assessment of mechanochemical reactions involving structurally unknown phases. Chem. Eur. J. 23, 13941–13949 (2017).

    CAS  PubMed  Google Scholar 

  61. 61.

    Lukin, S. et al. Isotope labeling reveals fast atomic and molecular exchange in mechanochemical milling reactions. J. Am. Chem. Soc. 141, 1212–1216 (2019).

    CAS  PubMed  Google Scholar 

  62. 62.

    Lukin, S. et al. Mechanochemical metathesis between AgNO3 and NaX (X = Cl, Br, I) and Ag2XNO3 double-salt formation. Inorg. Chem. 59, 12200–12208 (2020).

    CAS  PubMed  Google Scholar 

  63. 63.

    Kulla, H. et al. Warming up for mechanosynthesis—temperature development in ball mills during synthesis. Chem. Commun. 53, 1664–1667 (2017).

    CAS  Google Scholar 

  64. 64.

    Ali, S. J., Maierhofer, N. Z. & Christiane, E. F. Ettringite via mechanochemistry: a green and rapid approach for industrial application. ACS Omega 4, 7734–7737 (2019).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Fischer, F., Wenzel, K.-J., Rademann, K. & Emmerling, F. Quantitative determination of activation energies in mechanochemical reactions. Phys. Chem. Chem. Phys. 18, 23320–23325 (2016).

    CAS  PubMed  Google Scholar 

  66. 66.

    Kulla, H. et al. In situ investigations of mechanochemical one‐pot syntheses. Angew. Chem. Int. Ed. 57, 5930–5933 (2018).

    CAS  Google Scholar 

  67. 67.

    Sović, I. et al. Mechanochemical preparation of active pharmaceutical ingredients monitored by in situ raman spectroscopy. ACS Omega 5, 28663–28672 (2020).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    De Oliveira, P. F. M. et al. Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis. Chem. Commun. 56, 10329–10332 (2020).

    Google Scholar 

  69. 69.

    Schiffmann, J. G., Emmerling, F., Martins, I. C. B. & Van Wüllen, L. In-situ reaction monitoring of a mechanochemical ball mill reaction with solid state NMR. Solid State Nucl. Magn. Reson. 109, 101687 (2020).

    CAS  PubMed  Google Scholar 

  70. 70.

    Kulla, H. et al. Tuning the apparent stability of polymorphic cocrystals through mechanochemistry. Cryst. Growth Des. 19, 7271–7279 (2019).

    CAS  Google Scholar 

  71. 71.

    Surov, A. O. et al. Solid forms of ciprofloxacin salicylate: polymorphism, formation pathways, and thermodynamic stability. Cryst. Growth Des. 19, 2979–2990 (2019).

    CAS  Google Scholar 

  72. 72.

    Lukin, S. et al. Experimental and theoretical study of selectivity in mechanochemical cocrystallization of nicotinamide with anthranilic and salicylic acid. Cryst. Growth Des. 18, 1539–1547 (2018).

    CAS  Google Scholar 

  73. 73.

    Kulla, H., Michalchuk, A. A. L. & Emmerling, F. Manipulating the dynamics of mechanochemical ternary cocrystal formation. Chem. Commun. 55, 9793–9796 (2019).

    CAS  Google Scholar 

  74. 74.

    Fischer, F., Lubjuhn, D., Greiser, S., Rademann, K. & Emmerling, F. Supply and demand in the ball mill: competitive cocrystal reactions. Cryst. Growth Des. 16, 5843–5851 (2016).

    CAS  Google Scholar 

  75. 75.

    Lukin, S. et al. Mechanochemical carbon–carbon bond formation that proceeds via a cocrystal intermediate. Chem. Commun. 54, 13216–13219 (2018).

    CAS  Google Scholar 

  76. 76.

    Kulla, H., Greiser, S., Benemann, S., Rademann, K. & Emmerling, F. Knowing when to stop–trapping metastable polymorphs in mechanochemical reactions. Cryst. Growth Des. 17, 1190–1196 (2017).

    CAS  Google Scholar 

  77. 77.

    Stolar, T. et al. In situ monitoring of the mechanosynthesis of the archetypal metal-organic framework HKUST-1: effect of liquid additives on the milling reactivity. Inorg. Chem. 56, 6599–6608 (2017).

    CAS  PubMed  Google Scholar 

  78. 78.

    Fischer, F. et al. Polymorphism of mechanochemically synthesized cocrystals: a case study. Cryst. Growth Des. 16, 1701–1707 (2016).

    CAS  Google Scholar 

  79. 79.

    Tireli, M. et al. Mechanochemical reactions studied by in situ Raman spectroscopy: base catalysis in liquid-assisted grinding. Chem. Commun. 51, 8058–8061 (2015).

    CAS  Google Scholar 

  80. 80.

    Belenguer, A. M. et al. Understanding the influence of surface solvation and structure on polymorph stability: a combined mechanochemical and theoretical approach. J. Am. Chem. Soc. 140, 17051–17059 (2018).

    PubMed  Google Scholar 

  81. 81.

    Andersen, J. M. & Mack, J. Decoupling the Arrhenius equation via mechanochemistry. Chem. Sci. 8, 5447–5453 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Julien, P. A., Malvestiti, I. & Friščić, T. The effect of milling frequency on a mechanochemical organic reaction monitored by in situ Raman spectroscopy. Beilstein J. Org. Chem. 13, 2160–2168 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Michalchuk, A. A. L., Tumanov, I. A. & Boldyreva, E. V. Ball size or ball mass—what matters in organic mechanochemical synthesis? CrystEngComm 21, 2174–2179 (2019).

    CAS  Google Scholar 

  84. 84.

    Fischer, F., Fendel, N., Greiser, S., Rademann, K. & Emmerling, F. Impact Is important—systematic investigation of the influence of milling balls in mechanochemical reactions. Org. Process Res. Dev. 21, 655–659 (2017).

    CAS  Google Scholar 

  85. 85.

    Kulla, H., Fischer, F., Benemann, S., Rademann, K. & Emmerling, F. The effect of the ball to reactant ratio on mechanochemical reaction times studied by in situ PXRD. CrystEngComm 19, 3902–3907 (2017).

    CAS  Google Scholar 

  86. 86.

    Julien, P. A. et al. In situ monitoring and mechanism of the mechanochemical formation of a microporous MOF-74 framework. J. Am. Chem. Soc. 138, 2929–2932 (2016).

    CAS  PubMed  Google Scholar 

  87. 87.

    Wilke, M., Batzdorf, L., Fischer, F., Rademann, K. & Emmerling, F. Cadmium phenylphosphonates: preparation, characterisation and in situ investigation. RSC Adv. 6, 36011–36019 (2016).

    CAS  Google Scholar 

  88. 88.

    Lukin, S. et al. Solid-state supramolecular assembly of salicylic acid and 2-pyridone, 3-hydroxypyridine or 4-pyridone. Croat. Chem. Acta 90, 707–710 (2017).

    Google Scholar 

  89. 89.

    Bjelopetrović, A. et al. Mechanism of mechanochemical C–H bond activation in an azobenzene substrate by Pd(II) catalysts. Chem. Eur. J. 24, 10672–10682 (2018).

    PubMed  Google Scholar 

  90. 90.

    Ardila‐Fierro, K. J. et al. Direct visualization of a mechanochemically induced molecular rearrangement. Angew. Chem. Int. Ed. 59, 13458–13462 (2020).

    Google Scholar 

  91. 91.

    Biliškov, N. et al. In‐situ and real‐time monitoring of mechanochemical preparation of Li2Mg(NH2BH3)4 and Na2Mg(NH2BH3)4 and their thermal dehydrogenation. Chem. Eur. J. 23, 16274–16282 (2017).

    PubMed  Google Scholar 

  92. 92.

    Berry, D. J. et al. Applying hot-stage microscopy to co-crystal screening: a study of nicotinamide with seven active pharmaceutical ingredients. Cryst. Growth Des. 8, 1697–1712 (2008).

    CAS  Google Scholar 

  93. 93.

    André, V. et al. Mechanosynthesis of the metallodrug bismuth subsalicylate from Bi2O3 and structure of bismuth salicylate without auxiliary organic ligands. Angew. Chem. Int. Ed. 50, 7858–7861 (2011).

    Google Scholar 

  94. 94.

    Trask, A. V., Motherwell, W. D. S. & Jones, W. Physical stability enhancement of theophylline via cocrystallization. Int. J. Pharm. 320, 114–123 (2006).

    CAS  PubMed  Google Scholar 

  95. 95.

    Good, D. J. & Rodríguez-Hornedo, N. Solubility advantage of pharmaceutical cocrystals. Cryst. Growth Des. 9, 2252–2264 (2009).

    CAS  Google Scholar 

  96. 96.

    Stolar, T. et al. Control of pharmaceutical cocrystal polymorphism on various scales by mechanochemistry: transfer from the laboratory batch to the large-scale extrusion processing. ACS Sustain. Chem. Eng. 7, 7102–7110 (2019).

    CAS  Google Scholar 

  97. 97.

    de Juan, A., Jaumot, J. & Tauler, R. Multivariate curve resolution (MCR). Solving the mixture analysis problem. Anal. Methods 6, 4964–4976 (2014).

    Google Scholar 

  98. 98.

    Haferkamp, S., Paul, A., Michalchuk, A. A. L. & Emmerling, F. Unexpected polymorphism during a catalyzed mechanochemical Knoevenagel condensation. Beilstein J. Org. Chem. 15, 1141–1148 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Leistenschneider, D. et al. Tailoring the porosity of a mesoporous carbon by a solvent-free mechanochemical approach. Carbon 147, 43–50 (2019).

    CAS  Google Scholar 

  100. 100.

    Šepelák, V., Bégin-Colin, S. & Le Caër, G. Transformations in oxides induced by high-energy ball-milling. Dalton Trans. 41, 11927–11948 (2012).

    PubMed  Google Scholar 

  101. 101.

    Vogt, C. G. et al. Direct mechanocatalysis: palladium as milling media and catalyst in the mechanochemical suzuki polymerization. Angew. Chem. Int. Ed. 58, 18942–18947 (2019).

    CAS  Google Scholar 

  102. 102.

    Métro, T. –X., Gervais, C., Martinez, A., Bonhomme, C. & Laurencin, D. Unleashing the potential of 17ONMR spectroscopy using mechanochemistry. Angew. Chem. Int. Ed. 56, 6803–6807 (2017).

    Google Scholar 

  103. 103.

    Užarević, K. et al. Enthalpy vs. friction: heat flow modelling of unexpected temperature profiles in mechanochemistry of metal-organic frameworks. Chem. Sci. 9, 2525–2532 (2018).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Belenguer, A. M., Lampronti, G. I. & Sanders, J. K. M. Reliable mechanochemistry: protocols for reproducible outcomes of neat and liquid assisted ball-mill grinding experiments. J. Vis. Exp. 131, (2018).

  105. 105.

    Eilers, P. H. C. & Boelens, H. F. M. Baseline correction with asymmetric least squares smoothing. Leiden University Medical Center Report, Leiden (2005).

  106. 106.

    Eilers, P. H. C. A perfect smoother. Anal. Chem. 75, 3631–3636 (2003).

    CAS  PubMed  Google Scholar 

Download references


We thank the Ruđer Bošković Institute for financial support and our colleagues at the fine-mechanics workshop for their continuous help. The Croatian Science Foundation supports S.L. We thank the reviewers for their constructive critiques and suggestions to improve our manuscript. Part of this work was supported by the COST Action CA18112—Mechanochemistry for Sustainable Industry and by the Croatian Science Foundation (IP-2020-02-1419).

Author information




The methodology was originally designed and adapted by I.H. and K.U. and further developed by S.L. S.L. performed experiments and script preparation. S.L. wrote and prepared the manuscript with input from I.H. and K.U.

Corresponding author

Correspondence to Stipe Lukin.

Ethics declarations

Competing interests

I.H. and K.U. are shareholders in InSolido Technologies (Croatia).

Additional information

Peer review information Nature Protocols thanks Ana Belenguer, Nicholas Leadbeater and Adam Michalchuk for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Lukin, S. et al. Chem. Eur. J. 23, 13941–13949 (2017):

Lukin, S. et al. J. Am. Chem. Soc. 141, 1212–1216 (2019):

Gracin, D., Štrukil, V., Friščić, T., Halasz, I. & Užarević, K. Angew. Chem. Int. Ed. 53, 6193-6197 (2014):

Lukin, S. et al. Chem. Commun. 54, 13216–13219 (2018):!divAbstract

Bjelopetrović, A. et al. Chem. Eur. J. 24, 10672–10682 (2018):

Extended data

Extended Data Fig. 1

ATR-IR of reactants na, sal and resulting na:sal cocrystal.

Extended Data Fig. 2 Rietveld refinement of PXRD pattern (X-ray source: CuKα) of the resulting na:sal cocrystal after 60 min milling.

CSD code of the used structural model: SODDOF. Color scheme: blue—experimental PXRD pattern, red—refinement, gray—difference.

Extended Data Fig. 3 Selected Raman spectra from the monitoring experiment.

Lines indicate the Raman bands of interest for qualitative monitoring of the reaction progress.

Extended Data Fig. 4

The plot of in situ collected Raman spectra stored in variable SpectraAll before spike corrections.

Extended Data Fig. 5

The plot of in situ collected Raman spectra stored in variable SpectraAll after spike corrections.

Extended Data Fig. 6

The plot of in situ collected Raman spectra stored in variable Spectra after the subtraction of the PMMA contribution.

Extended Data Fig. 7 The plot of in situ collected Raman spectra stored in variable sp after defining spectral and temporal range.

Note that spectral range is now in the range from first_wnmb up to last_wnmb.

Extended Data Fig. 8

a,b, Examples of the baseline correction of selected in situ Raman spectra at 1 min (a) and 50 min (b) into milling experiment. Color code: blue—experimental Raman spectrum, orange—baseline estimation.

Extended Data Fig. 9

The plot of in situ collected Raman spectra stored in variable Nsp after the baseline correction.

Extended Data Fig. 10 The plot of in situ collected Raman spectra stored in variable N1sp after normalization.

Note the different scale on y-axis when compared with the nonnormalized spectra in Extended Data Fig. 9.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Reporting Summary

Supplementary Data 1

Experimental Raman spectra and GNU Octave scripts.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lukin, S., Užarević, K. & Halasz, I. Raman spectroscopy for real-time and in situ monitoring of mechanochemical milling reactions. Nat Protoc 16, 3492–3521 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing