Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Design of metal-mediated protein assemblies via hydroxamic acid functionalities

Abstract

The self-assembly of proteins into sophisticated multicomponent assemblies is a hallmark of all living systems and has spawned extensive efforts in the construction of novel synthetic protein architectures with emergent functional properties. Protein assemblies in nature are formed via selective association of multiple protein surfaces through intricate noncovalent protein–protein interactions, a challenging task to accurately replicate in the de novo design of multiprotein systems. In this protocol, we describe the application of metal-coordinating hydroxamate (HA) motifs to direct the metal-mediated assembly of polyhedral protein architectures and 3D crystalline protein–metal–organic frameworks (protein-MOFs). This strategy has been implemented using an asymmetric cytochrome cb562 monomer through selective, concurrent association of Fe3+ and Zn2+ ions to form polyhedral cages. Furthermore, the use of ditopic HA linkers as bridging ligands with metal-binding protein nodes has allowed the construction of crystalline 3D protein-MOF lattices. The protocol is divided into two major sections: (1) the development of a Cys-reactive HA molecule for protein derivatization and self-assembly of protein–HA conjugates into polyhedral cages and (2) the synthesis of ditopic HA bridging ligands for the construction of ferritin-based protein-MOFs using symmetric metal-binding protein nodes. Protein cages are analyzed using analytical ultracentrifugation, transmission electron microscopy and single-crystal X-ray diffraction techniques. HA-mediated protein-MOFs are formed in sitting-drop vapor diffusion crystallization trays and are probed via single-crystal X-ray diffraction and multi-crystal small-angle X-ray scattering measurements. Ligand synthesis, construction of HA-mediated assemblies, and post-assembly analysis as described in this protocol can be performed by a graduate-level researcher within 6 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HA-mediated protein self-assembly.
Fig. 2: Design strategies for de novo protein self-assembly.
Fig. 3: Experimental overview for the generation of HA-mediated protein cages (Procedure 1).
Fig. 4: Experimental overview for the generation of HA-mediated protein-MOFs (Procedure 2).
Fig. 5: Selection of the protein building blocks for HA-mediated self-assembly.
Fig. 6: Synthetic schemes for the generation of HA ligands.
Fig. 7: Experimental setup and representative images of products in the synthesis of IHA.
Fig. 8: Anticipated results for HA-mediated protein self-assembly.

Similar content being viewed by others

Data availability

The principal data supporting the findings of this work are available within the figures and the Supplementary Information. Additional data that support the findings of this study are available from the corresponding author on request.

References

  1. Marsh, J. A. & Teichmann, S. A. Structure, dynamics, assembly, and evolution of protein complexes. Annu. Rev. Biochem. 84, 551–575 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Barber, J. Photosystem II: the engine of life. Q. Rev. Biophys. 36, 71–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Eitoku, M., Sato, L., Senda, T. & Horikoshi, M. Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly. Cell. Mol. Life Sci. 65, 414–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Yeates, T. O. Geometric principles for designing highly symmetric self-assembling protein nanomaterials. Annu. Rev. Biophys. 46, 23–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Bai, Y., Luo, Q. & Liu, J. Protein self-assembly via supramolecular strategies. Chem. Soc. Rev. 45, 2756–2767 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Hamley, I. W. Protein assemblies: nature-inspired and designed nanostructures. Biomacromolecules 20, 1829–1848 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Churchfield, L. A. & Tezcan, F. A. Design and construction of functional supramolecular metalloprotein assemblies. Acc. Chem. Res. 52, 345–355 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    Article  Google Scholar 

  9. Cannon, K. A., Ochoa, J. M. & Yeates, T. O. High-symmetry protein assemblies: patterns and emerging applications. Curr. Opin. Struc. Biol. 55, 77–84 (2019).

    Article  CAS  Google Scholar 

  10. Golub, E. et al. Constructing protein polyhedra via orthogonal chemical interactions. Nature 578, 172–176 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sontz, P. A., Bailey, J. B., Ahn, S. & Tezcan, F. A. A metal organic framework with spherical protein nodes: rational chemical design of 3D protein crystals. J. Am. Chem. Soc. 137, 11598–11601 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Brodin, J. D. et al. Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat. Chem. 4, 375–382 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song, W. J. & Tezcan, F. A. A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346, 1525–1528 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Churchfield, L. A., Medina-Morales, A., Brodin, J. D., Perez, A. & Tezcan, F. A. De novo design of an allosteric metalloprotein assembly with strained disulfide bonds. J. Am. Chem. Soc. 138, 13163–13166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wong, G. B., Kappel, M. J., Raymond, K. N., Matzanke, B. & Winkelmann, G. Coordination chemistry of microbial iron transport compounds. 24. Characterization of coprogen and ferricrocin, two ferric hydroxamate siderophores. J. Am. Chem. Soc. 105, 810–815 (1983).

    Article  CAS  Google Scholar 

  16. Crumbliss, A. L. Iron bioavailability and the coordination chemistry of hydroxamic acids. Coord. Chem. Rev. 105, 155–179 (1990).

    Article  CAS  Google Scholar 

  17. Bailey, J. B., Zhang, L., Chiong, J. A., Ahn, S. & Tezcan, F. A. Synthetic modularity of protein–metal–organic frameworks. J. Am. Chem. Soc. 139, 8160–8166 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Bailey, J. B. & Tezcan, F. A. Tunable and cooperative thermomechanical properties of protein–metal–organic frameworks. J. Am. Chem. Soc. 142, 17265–17270 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Padilla, J. E., Colovos, C. & Yeates, T. O. Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc. Natl Acad. Sci. USA 98, 2217–2221 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lai, Y.-T., Cascio, D. & Yeates, T. O. Structure of a 16-nm cage designed by using protein oligomers. Science 336, 1129 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Lai, Y.-T. et al. Structure of a designed protein cage that self-assembles into a highly porous cube. Nat. Chem. 6, 1065–1071 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cannon, K. A., Nguyen, V. N., Morgan, C. & Yeates, T. O. Design and characterization of an icosahedral protein cage formed by a double-fusion protein containing three distinct symmetry elements. ACS Synth. Biol. 9, 517–524 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Cristie-David, A. S. et al. Coiled-coil-mediated assembly of an icosahedral protein cage with extremely high thermal and chemical stability. J. Am. Chem. Soc. 141, 9207–9216 (2019).

    Article  PubMed  Google Scholar 

  24. Sinclair, J. C., Davies, K. M., Venien-Bryan, C. & Noble, M. E. M. Generation of protein lattices by fusing proteins with matching rotational symmetry. Nat. Nanotechnol. 6, 558–562 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Hsia, Y. et al. Design of a hyperstable 60-subunit protein dodecahedron. Nature 535, 136–139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bale, J. B. et al. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353, 389–394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gonen, S., DiMaio, F., Gonen, T. & Baker, D. Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces. Science 348, 1365–1368 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki, Y. et al. Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature 533, 369–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alberstein, R., Suzuki, Y., Paesani, F. & Tezcan, F. A. Engineering the entropy-driven free-energy landscape of a dynamic nanoporous protein assembly. Nat. Chem. 10, 732–739 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Malay, A. D. et al. An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature 569, 438–442 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Cristie-David, A. S. & Marsh, E. N. G. Metal-dependent assembly of a protein nano-cage. Protein Sci. 28, 1620–1629 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Song, W. J., Sontz, P. A., Ambroggio, X. I. & Tezcan, F. A. Metals in protein-protein interfaces. Ann. Rev. Biophys. 43, 409–431 (2014).

    Article  CAS  Google Scholar 

  33. Salgado, E. N., Faraone-Mennella, J. & Tezcan, F. A. Controlling protein-protein interactions through metal coordination: assembly of a 16-helix bundle protein. J. Am. Chem. Soc. 129, 13374–13375 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Salgado, E. N., Lewis, R. A., Mossin, S., Rheingold, A. L. & Tezcan, F. A. Control of protein oligomerization symmetry by metal coordination: C2 and C3 symmetrical assemblies through CuII and NiII coordination. Inorg. Chem. 48, 2726–2728 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Salgado, E. N. et al. Metal-templated design of protein interfaces. Proc. Natl Acad. Sci. USA 107, 1827–1832 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Salgado, E. N., Radford, R. J. & Tezcan, F. A. Metal-directed protein self-assembly. Acc. Chem. Res. 43, 661–672 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brodin, J. D. et al. Evolution of metal selectivity in templated protein interfaces. J. Am. Chem. Soc. 132, 8610–8617 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Medina-Morales, A., Perez, A., Brodin, J. D. & Tezcan, F. A. In vitro and cellular self-assembly of a Zn-binding protein cryptand via templated disulfide bonds. J. Am. Chem. Soc. 135, 12013–12022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brodin, J. D., Smith, S. J., Carr, J. R. & Tezcan, F. A. Designed, helical protein nanotubes with variable diameters from a single building block. J. Am. Chem. Soc. 137, 10468–10471 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Song, W. J., Yu, J. & Tezcan, F. A. Importance of scaffold flexibility/rigidity in the design and directed evolution of artificial metallo-β-lactamases. J. Am. Chem. Soc. 139, 16772–16779 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Churchfield, L. A., Alberstein, R. G., Williamson, L. M. & Tezcan, F. A. Determining the structural and energetic basis of allostery in a de novo designed metalloprotein assembly. J. Am. Chem. Soc. 140, 10043–10053 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Edwardson, T. G. W. & Hilvert, D. Virus-inspired function in engineered protein cages. J. Am. Chem. Soc. 141, 9432–9443 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Heddle, J. G., Chakraborti, S. & Iwasaki, K. Natural and artificial protein cages: design, structure and therapeutic applications. Curr. Opin. Struct. Biol. 43, 148–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Margolin, A. L. & Navia, M. A. Protein crystals as novel catalytic materials. Angew. Chem. Int. Ed. 40, 2205–2222 (2001).

    Article  Google Scholar 

  45. Abe, S. et al. Design of enzyme-encapsulated protein containers by in vivo crystal engineering. Adv. Mater. 27, 7951–7956 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. McPherson, A. & Gavira, J. A. Introduction to protein crystallization. Acta Crystallogr. F. Struct. Biol. Commun. 70, 2–20 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Johnson, J. E. & Speir, J. A. Quasi-equivalent viruses: a paradigm for protein assemblies. J. Mol. Biol. 269, 665–675 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Mateu, M. G. Assembly, stability and dynamics of virus capsids. Arch. Biochem. Biophys. 531, 65–79 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Radford, R. J., Nguyen, P. C., Ditri, T. B., Figueroa, J. S. & Tezcan, F. A. Controlled protein dimerization through hybrid coordination motifs. Inorg. Chem. 49, 4362–4369 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Radford, R. J., Nguyen, P. C. & Tezcan, F. A. Modular and versatile hybrid coordination motifs on alpha-helical protein surfaces. Inorg. Chem. 2010, 7106–7115 (2010).

    Article  Google Scholar 

  51. Yang, M. & Song, W. J. Diverse protein assembly driven by metal and chelating amino acids with selectivity and tunability. Nat. Commun. 10, 5545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pearson, R. G. Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963).

    Article  CAS  Google Scholar 

  53. Baldwin, A. D. & Kiick, K. L. Tunable degradation of maleimide–thiol adducts in reducing environments. Bioconjug. Chem. 22, 1946–1953 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Toussaint, L., Bertrand, L., Hue, L., Crichton, R. R. & Declercq, J.-P. High-resolution X-ray structures of human apoferritin H-chain mutants correlated with their activity and metal-binding sites. J. Mol. Biol. 365, 440–452 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Kanekiyo, M., Ellis, D. & King, N. P. New vaccine design and delivery technologies. J. Infect. Dis. 219, S88–S96 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Butterfield, G. L. et al. Evolution of a designed protein assembly encapsulating its own RNA genome. Nature 552, 415–420 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Uchida, M. et al. Modular self-assembly of protein cage lattices for multistep catalysis. ACS Nano 12, 942–953 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. MaHam, A., Tang, Z. W., Wu, H., Wang, J. & Lin, Y. H. Protein-based nanomedicine platforms for drug delivery. Small 5, 1706–1721 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Dreschel, H. & Winkelmann, G. Iron chelation and siderophores. in Transition Metals in Microbial Metabolism (eds Winkelmann, G. & Carrano, C. J.) 1–51 (Harwood Academic Publishers, 1997).

  60. Kaes, C., Katz, A. & Hosseini, M. W. Bipyridine: the most widely used ligand. A review of molecules comprising at least two 2,2′-bipyridine units. Chem. Rev. 100, 3553–3590 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Hofmeier, H. & Schubert, U. S. Recent developments in the supramolecular chemistry of terpyridine–metal complexes. Chem. Soc. Rev. 33, 373–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Jiang, P. & Guo, Z. Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord. Chem. Rev. 248, 205–229 (2004).

    Article  CAS  Google Scholar 

  63. Xie, J., Liu, W. & Schultz, P. G. A genetically encoded bidentate, metal-binding amino acid. Angew. Chem. Int. Ed. Engl. 46, 9239–9242 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Lee, H. S., Spraggon, G., Schultz, P. G. & Wang, F. Genetic incorporation of a metal-ion chelating amino acid into proteins as a biophysical probe. J. Am. Chem. Soc. 131, 2481–2483 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, M. et al. Spectroscopic and crystallographic investigations of novel BODIPY-derived metal–organic frameworks. Inorg. Chem. 54, 1346–1353 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Bandara, H. M. D. & Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012).

    Article  CAS  Google Scholar 

  67. King, N. P. et al. Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336, 1171–1174 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. King, N. P. et al. Accurate design of co-assembling multi-component protein nanomaterials. Nature 510, 103–108 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Langan, R. A. et al. De novo design of bioactive protein switches. Nature 572, 205–210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yuan, Y., Tam, M. F., Simplaceanu, V. & Ho, C. New look at hemoglobin allostery. Chem. Rev. 115, 1702–1724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McPherson, A. & Cudney, B. Optimization of crystallization conditions for biological macromolecules. Acta Cryst. F. Struct. Biol. Commun. 70, 1445–1467 (2014).

    Article  CAS  Google Scholar 

  72. Goldschmidt, L., Cooper, D. R., Derewenda, Z. S. & Eisenberg, D. Toward rational protein crystallization: a web server for the design of crystallizable protein variants. Protein Sci. 16, 1569–1576 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Banatao, D. R. et al. An approach to crystallizing proteins by synthetic symmetrization. Proc. Natl Acad. Sci. USA 103, 16230–16235 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Künzle, M., Eckert, T. & Beck, T. Binary protein crystals for the assembly of inorganic nanoparticle superlattices. J. Am. Chem. Soc. 138, 12731–12734 (2016).

    Article  PubMed  Google Scholar 

  75. Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ni, T. W. & Tezcan, F. A. Structural characterization of a microperoxidase inside a metal-directed protein cage. Angew. Chem. Int. Ed. 49, 7014–7018 (2010).

    Article  CAS  Google Scholar 

  77. Michalak, K., Wicha, J. & Wójcik, J. Studies towards dynamic kinetic resolution of 4-hydroxy-2-methylcyclopent-2-en-1-one and its E-O-trityloxime. Tetrahedron 72, 4813–4820 (2016).

    Article  CAS  Google Scholar 

  78. Faraone-Mennella, J., Tezcan, F. A., Gray, H. B. & Winkler, J. R. Stability and folding kinetics of structurally characterized cytochrome cb562. Biochemistry 45, 10504–10511 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Carrano, C. J. & Raymond, K. N. Coordination chemistry of microbial iron transport compounds. 10. Characterization of the complexes of rhodotorulic acid, a dihydroxamate siderophore. J. Am. Chem. Soc. 100, 5371–5374 (1978).

    Article  CAS  Google Scholar 

  80. Pflugrath, J. W. Practical macromolecular cryocrystallography. Acta Crystallogr. F. Struct. Biol. Commun. 71, 622–642 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bailey, J. B., Subramanian, R. H., Churchfield, L. A. & Tezcan, F. A. Metal-directed design of supramolecular protein assemblies. in Peptide, Protein and Enzyme Design (ed Pecoraro, V. L.) 223–250 (Academic Press, 2016).

  82. Hem, J. D. & Skougstad, M. W. Coprecipitation effects in solutions containing ferrous, ferric, and cupric ions. USGS Report No. 1459E. https://doi.org/10.3133/wsp1459E (1960).

  83. Lebowitz, J., Lewis, M. S. & Schuck, P. Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci. 11, 2067–2079 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cole, J. L., Lary, J. W., P. Moody, T. & Laue, T. M. Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium. Methods Cell Biol. 84, 143–179 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D. 66, 133–144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kabsch, W. XDS. Acta Crystallogr. D. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Adams, P. D. et al. PHENIX—a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 210, 213–221 (2010).

    Article  Google Scholar 

  89. Macrae, C. F. et al. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 53, 226–235 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Avakyan and R. Alberstein for helpful discussions. This work was supported by the US Department of Energy (Division of Materials Sciences, Office of Basic Energy Sciences; DE-SC0003844; for protein-MOF work, including design, data collection and analysis as well as for protein-cage design and EM analyses) and by the National Science Foundation (Division of Materials Research; DMR-1602537 and DMR-2004558; crystallographic analyses of protein cages). R.H.S. was supported by the National Institute of Health Chemical Biology Interfaces Training Grant UC San Diego (T32GM112584).

Author information

Authors and Affiliations

Authors

Contributions

E.G. and F.A.T. conceived the protein-cage project. J.Z., J.A.C. and Y.L. synthesized HA ligands for the protein-cage project. E.G. and R.H.S. performed protein-cage experiments and data analysis. J.B.B. and F.A.T. conceived the protein-MOF project. J.B.B. synthesized ditopic HA ligands and performed protein-MOF experiments and data analysis. R.H.S. and F.A.T. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to F. Akif Tezcan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Christopher Snow and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Sontz, P. A. et al. J. Am. Chem. Soc. 137, 11598–11601 (2015): https://pubs.acs.org/doi/10.1021/jacs.5b07463

Bailey, J. B. et al. J. Am. Chem. Soc. 139, 8160–8166 (2017): https://pubs.acs.org/doi/10.1021/jacs.7b01202

Golub, E. et al. Nature 578, 172–176 (2020): https://www.nature.com/articles/s41586-019-1928-2

Bailey, J. B. et al. J. Am. Chem. Soc. 142, 17265–17270 (2020): https://pubs.acs.org/doi/10.1021/jacs.0c07835

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, R.H., Zhu, J., Bailey, J.B. et al. Design of metal-mediated protein assemblies via hydroxamic acid functionalities. Nat Protoc 16, 3264–3297 (2021). https://doi.org/10.1038/s41596-021-00535-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00535-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing