Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Chromatin tracing and multiplexed imaging of nucleome architectures (MINA) and RNAs in single mammalian cells and tissue

Abstract

The genome is hierarchically organized into several 3D architectures, including chromatin loops, domains, compartments and regions associated with nuclear lamina and nucleoli. Changes in these architectures have been associated with normal development, aging and a wide range of diseases. Despite its critical importance, understanding how the genome is spatially organized in single cells, how organization varies in different cell types in mammalian tissue and how organization affects gene expression remains a major challenge. Previous approaches have been limited by a lack of capacity to directly trace chromatin folding in 3D and to simultaneously measure genomic organization in relation to other nuclear components and gene expression in the same single cells. We have developed an image-based 3D genomics technique termed ‘chromatin tracing’, which enables direct 3D tracing of chromatin folding along individual chromosomes in single cells. More recently, we also developed multiplexed imaging of nucleome architectures (MINA), which enables simultaneous measurements of multiscale chromatin folding, associations of genomic regions with nuclear lamina and nucleoli and copy numbers of numerous RNA species in the same single cells in mammalian tissue. Here, we provide detailed protocols for chromatin tracing in cell lines and MINA in mammalian tissue, which take 3–4 d for experimental work and 2–3 d for data analysis. We expect these developments to be broadly applicable and to affect many lines of research on 3D genomics by depicting multiscale genomic architectures associated with gene expression, in different types of cells and tissue undergoing different biological processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of the chromatin-tracing and MINA protocols.
Fig. 2: Primary probe synthesis.
Fig. 3: Outline of the MINA method.
Fig. 4: Outline of MINA sequential hybridization and imaging.
Fig. 5: Data analysis with MinaAnalyst.
Fig. 6: Schematic illustration of the home-built microscope and focus-lock system.
Fig. 7: Example results of single-copy and ensemble analyses of chromatin tracing.
Fig. 8: Example results of gene expression and cell type–specific genome architecture analyses.

Similar content being viewed by others

Data availability

An example raw dataset of two imaging fields is downloadable from https://campuspress.yale.edu/wanglab/mina-analyst/. The full datasets used to generate Figs. 7 and 8 are not uploaded online because of the prohibitively large size. The full datasets are available from the corresponding author upon request. Source data are provided with this paper.

Code availability

The ProbeDealer package can be downloaded from https://campuspress.yale.edu/wanglab/probedealer. The MinaAnalyst package can be downloaded from https://campuspress.yale.edu/wanglab/mina-analyst/.

References

  1. Finn, E. H. & Misteli, T. Molecular basis and biological function of variability in spatial genome organization. Science 365, eaaw9498 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gorkin, D. U., Leung, D. & Ren, B. The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 14, 762–775 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levine, M., Cattoglio, C. & Tjian, R. Looping back to leap forward: transcription enters a new era. Cell 157, 13–25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bickmore, W. A. & van Steensel, B. Genome architecture: domain organization of interphase chromosomes. Cell 152, 1270–1284 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Cremer, T. & Cremer, M. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2, a003889 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bonora, G., Plath, K. & Denholtz, M. A mechanistic link between gene regulation and genome architecture in mammalian development. Curr. Opin. Genet. Dev. 27, 92–101 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Pope, B. D. et al. Topologically associating domains are stable units of replication-timing regulation. Nature 515, 402–405 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Steensel, B. & Furlong, E. E. M. The role of transcription in shaping the spatial organization of the genome. Nat. Rev. Mol. Cell Biol. 20, 327–337 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. Zhang, Y. et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148, 908–921 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Senigl, F. et al. Topologically associated domains delineate susceptibility to somatic hypermutation. Cell Rep 29, 3902–3915.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Misteli, T. & Soutoglou, E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat. Rev. Mol. Cell Biol. 10, 243–254 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Akdemir, K. C. et al. Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nat. Genet. 52, 294–305 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, Q., Sun, Q., Czajkowsky, D. M. & Shao, Z. Sub-kb Hi-C in D. melanogaster reveals conserved characteristics of TADs between insect and mammalian cells. Nat. Commun. 9, 188 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, M. et al. Multiplexed imaging of nucleome architectures in single cells of mammalian tissue. Nat. Commun. 11, 2907 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sawh, A. N. et al. Lamina-dependent stretching and unconventional chromosome compartments in early C. elegans embryos. Mol. Cell 78, 96–111.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nir, G. et al. Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genet. 14, e1007872 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mateo, L. J. et al. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49–54 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cardozo Gizzi, A. M. et al. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol. Cell 74, 212–222.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Su, J.-H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182, 1641–1659.e26 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Hu, M. & Wang, S. Chromatin tracing: imaging 3D genome and nucleome. Trends Cell Biol. 31, 5–8 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Plath, K., Mlynarczyk-Evans, S., Nusinow, D. A. & Panning, B. Xist RNA and the mechanism of X chromosome inactivation. Annu. Rev. Genet. 36, 233–278 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Galupa, R. & Heard, E. X-chromosome inactivation: new insights into cis and trans regulation. Curr. Opin. Genet. Dev. 31, 57–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Lessing, D., Anguera, M. C. & Lee, J. T. X chromosome inactivation and epigenetic responses to cellular reprogramming. Annu. Rev. Genomics Hum. Genet. 14, 85–110 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Németh, A. et al. Initial genomics of the human nucleolus. PLOS Genet 6, e1000889 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. van Koningsbruggen, S. et al. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol. Biol. Cell 21, 3735–3748 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. Natl Acad. Sci. USA 116, 19490–19499 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Boyle, S., Rodesch, M. J., Halvensleben, H. A., Jeddeloh, J. A. & Bickmore, W. A. Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. Chromosome Res. 19, 901–909 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamada, N. A. et al. Visualization of fine-scale genomic structure by oligonucleotide-based high-resolution FISH. Cytogenet. Genome Res. 132, 248–254 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Beliveau, B. J. et al. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl Acad. Sci. USA 109, 21301–21306 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Hu, M. et al. ProbeDealer is a convenient tool for designing probes for highly multiplexed fluorescence in situ hybridization. Sci. Rep. 10, 22031 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Farack, L. & Itzkovitz, S. Protocol for single-molecule fluorescence in situ hybridization for intact pancreatic tissue. STAR Protoc 1, 100007 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Moffitt, J. R. et al. High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc. Natl Acad. Sci. USA 113, 14456–14461 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Xia, C., Babcock, H. P., Moffitt, J. R. & Zhuang, X. Multiplexed detection of RNA using MERFISH and branched DNA amplification. Sci. Rep. 9, 7721 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Stevens, T. J. et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59–64 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Tan, L., Xing, D., Chang, C.-H., Li, H. & Xie, X. S. Three-dimensional genome structures of single diploid human cells. Science 361, 924–928 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dey, S. S., Kester, L., Spanjaard, B., Bienko, M. & van Oudenaarden, A. Integrated genome and transcriptome sequencing of the same cell. Nat. Biotechnol. 33, 285–289 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Macaulay, I. C. et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519–522 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Moffitt, J. R. et al. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc. Natl Acad. Sci. USA 113, 11046–11051 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Rouillard, J.-M. OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. Nucleic Acids Res. 31, 3057–3062 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Beliveau, B. J. et al. OligoMiner provides a rapid, flexible environment for the design of genome-scale oligonucleotide in situ hybridization probes. Proc. Natl Acad. Sci. USA 115, E2183–E2192 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Passaro, M. et al. OligoMinerApp: a web-server application for the design of genome-scale oligonucleotide in situ hybridization probes through the flexible OligoMiner environment. Nucleic Acids Res. 48, W332–W339 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moffitt, J. R. & Zhuang, X. RNA imaging with multiplexed error-robust fluorescence in situ hybridization (MERFISH). Methods Enzymol. 572, 1–49 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rasnik, I., McKinney, S. A. & Ha, T. Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods 3, 891 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.W. is supported by NIH Director’s New Innovator Award 1DP2GM137414, NCI grant 1R33CA251037, NHGRI grant 1R01HG011245 and 4DN NCI grant 1U01CA260701. This work is partially supported by NHGRI grant 1R01HG011245. M.H. and Y.Cheng are supported by a China Scholarship Council (CSC) Grant. J.S.D.R. is supported by an NIH Predoctoral Training Grant (2T32GM007499). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

S.W. conceived and developed the chromatin-tracing technique with help from others and conceived the MINA technique. M.L. performed experiments in developing MINA with help from others. M.H., B.Y. and S.W. built the ProbeDealer package with help from others. S.W. built the MinaAnalyst package. M.L. and S.W. wrote the manuscript with inputs from B.Y., M.H., J.S.D.R., Y. Chen, S.J. and Y. Cheng.

Corresponding author

Correspondence to Siyuan Wang.

Ethics declarations

Competing interests

S.W. is one of the inventors on a patent applied for by Harvard University related to MERFISH. The other authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Vadim Backman and Srinjan Basu for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Wang, S. et al. Science 353, 598–602 (2016): https://doi.org/10.1126/science.aaf8084

Liu, M. et al. Nat. Commun. 11, 2907 (2020): https://doi.org/10.1038/s41467-020-16732-5

Hu, M. et al. Sci. Rep. 10, 22031 (2020): https://doi.org/10.1038/s41598-020-76439-x

Key data used in this protocol

Liu, M. et al. Nat. Commun. 11, 2907 (2020): https://doi.org/10.1038/s41467-020-16732-5

Supplementary information

Reporting Summary

Supplementary Table 1

Sequences of the forward primers, reverse primers and reverse transcription primers for primary probe synthesis

Supplementary Table 2

Sequences of Alexa Fluor 750–labeled MERFISH secondary probes, Alexa Fluor 647–labeled chromatin-tracing secondary probes and ATTO 565–labeled chromatin-tracing secondary probes

Source data

Source Data Fig. 2

Unprocessed gels.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 8a

Unprocessed images.

Source Data Fig. 8b–e

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Yang, B., Hu, M. et al. Chromatin tracing and multiplexed imaging of nucleome architectures (MINA) and RNAs in single mammalian cells and tissue. Nat Protoc 16, 2667–2697 (2021). https://doi.org/10.1038/s41596-021-00518-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00518-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing