Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Extraction of nuclei from archived postmortem tissues for single-nucleus sequencing applications

Abstract

Single-cell and single-nucleus sequencing techniques are a burgeoning field with various biological, biomedical and clinical applications. Numerous high- and low-throughput methods have been developed for sequencing the RNA and DNA content of single cells. However, for all these methods, the key requirement is high-quality input of a single-cell or single-nucleus suspension. Preparing such a suspension is the limiting step when working with fragile, archived tissues of variable quality. This hurdle can prevent such tissues from being extensively investigated with single-cell technologies. We describe a protocol for preparing single-nucleus suspensions within the span of a few hours that reliably works for multiple postmortem and archived tissue types using standard laboratory equipment. The stages of the protocol include tissue preparation and dissociation, nuclei extraction, and nuclei concentration assessment and capture. The protocol is comparable to other published protocols but does not require fluorescence-assisted nuclei sorting (FANS) or ultracentrifugation. The protocol can be carried out by a competent graduate student familiar with basic laboratory techniques and equipment. Moreover, these preparations are compatible with single-nucleus (sn)RNA-seq and assay for transposase-accessible chromatin (ATAC)-seq using the 10X Genomics Chromium system. The protocol reliably results in efficient capture of single nuclei for high-quality snRNA-seq libraries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the steps of the protocol.
Fig. 2: Effect of sample quality parameters on single-nucleus capture and sequencing metrics.
Fig. 3: Images of extracted nuclei.
Fig. 4: cDNA traces and quality metrics for snRNA-seq libraries before and after optimization of nucleus extraction.

Similar content being viewed by others

Data availability

Raw sequencing data are accessible on GEO using the accession number GSE144136.

References

  1. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zilionis, R. et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 12, 44–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, Y. et al. Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate. Proc. Natl Acad. Sci. USA 115, 2407–2412 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sathyamurthy, A. et al. Massively parallel single nucleus transcriptional profiling defines spinal cord neurons and their activity during behavior. Cell. Rep. 22, 2216–2225 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21, 120–129 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Hochgerner, H., Zeisel, A., Lönnerberg, P. & Linnarsson, S. Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nat. Neurosci. 21, 290–299 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586–1590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Habib, N. et al. Massively parallel single-nucleus RNA-seq with dronc-seq. Nat. Methods 14, 955 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Sullivan, P. F., Neale, M. C. & Kendler, K. S. Genetic epidemiology of major depression: review and meta-analysis. Am. J. Psychiatry 157, 1552–1562 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Lacar, B. et al. Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat. Commun. 7, 11022 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14, 935 (2017).

    Article  PubMed  Google Scholar 

  15. Grindberg, R. V. et al. RNA-sequencing from single nuclei. Proc. Natl Acad. Sci. 110, 19802–19807 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lake, B. B. et al. A comparative strategy for single-nucleus and single-cell transcriptomes confirms accuracy in predicted cell-type expression from nuclear RNA. Sci. Rep. 7, 6031 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cutler, A. A., Jackson, J. B., Corbett, A. H. & Pavlath, G. K. Non-equivalence of nuclear import among nuclei in multinucleated skeletal muscle cells. J. Cell Sci. 131 (2018).

  18. Berridge, B. R., Bolon, B. & Herman, E. Skeletal muscle system. in Fundamentals of Toxicologic Pathology 3rd edn (eds Wallig, M. A. et al.) Ch. 10, 195–212 (Academic Press, 2018).

  19. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grubman, A. et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat. Neurosci. 22, 2087–2097 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Jäkel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Velmeshev, D. et al. Single-cell genomics identifies cell type–specific molecular changes in autism. Science 364, 685 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krishnaswami, S. R. et al. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat. Protoc. 11, 499–524 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nagy, C. et al. Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons. Nat. Neurosci. 23, 771–781 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Jessa, S. et al. Stalled developmental programs at the root of pediatric brain tumors. Nat. Genet. 51, 1702–1713 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reiner, B. C. et al. Single-nuclei transcriptomics of schizophrenia prefrontal cortex primarily implicates neuronal subtypes. Preprint at bioRxiv https://doi.org/10.1101/2020.07.29.227355 (2020).

  27. Sorrells, S. F. et al. Immature excitatory neurons develop during adolescence in the human amygdala. Nat. Commun. 10, 2748 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Proudfoot, N. J., Furger, A. & Dye, M. J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Amamoto, R. et al. Probe-Seq enables transcriptional profiling of specific cell types from heterogeneous tissue by RNA-based isolation. Elife 8, e51452 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873–1887.e1817 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Skelly, D. A. et al. Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell. Rep. 22, 600–610 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Cusanovich, D. A. et al. The cis-regulatory dynamics of embryonic development at single-cell resolution. Nature 555, 538–542 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thrupp, N. et al. Single-nucleus RNA-seq is not suitable for detection of microglial activation genes in humans. Cell. Rep. 32, 108189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e1821 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Benaglia, T., Chauveau, D., Hunter, D. R. & Young, D. S. mixtools: an R package for analyzing mixture models. J. Stat. Softw. https://www.jstatsoft.org/index.php/jss/article/view/v032i06/v32i06.pdf (2009).

  36. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2017).

  37. Yu, W., Uzun, Y., Zhu, Q., Chen, C. & Tan, K. Scatac-pro: a comprehensive workbench for single-cell chromatin accessibility sequencing data. Genome Biol. 21, 94 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kiselev, V. Y. et al. SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods 14, 483–486 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Y. et al. Model-based analysis of chip-seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lutz, P. E. et al. Association of a history of child abuse with impaired myelination in the anterior cingulate cortex: convergent epigenetic, transcriptional, and morphological evidence. Am. J. Psychiatry 174, 1185–1194 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

G.T. holds a Canada Research Chair (Tier 1) and a NARSAD Distinguished Investigator Award. He is supported by grants from the Canadian Institute of Health Research (CIHR) (FDN148374 and EGM141899). Further support is provided by CFI Leaders Opportunity Fund, CFI#33408 and #35444, Genome Canada Science Genome Innovation Node grant (to J.R.). C. Nascimento was supported by grant 2018/11963-8 from the São Paulo Research Foundation (FAPESP). M.S. is hosted within the MRC Integrative Epidemiology Unit at the University of Bristol, which is supported by The Medical Research Council (MC_UU_00011/5). We acknowledge the expert help of the Douglas-Bell Canada Brain Bank staff (J. Prud’homme, M. Bouchouka and A. Baccichet), and the technology development team at the McGill University and Genome Quebec Innovation Centre. The Douglas-Bell Canada Brain Bank is supported in part by funding from the Canada First Research Excellence Fund, awarded to McGill University for the Healthy Brains for Healthy Lives project, and from the Fonds de recherche du Québec - Santé (FRQS) through the Quebec Network on Suicide, Mood Disorders and Related Disorders. The present study used the services of the Molecular and Cellular Microscopy Platform (MCMP) at the Douglas Institute.

Author information

Authors and Affiliations

Authors

Contributions

M.M. and C. Nagy developed nucleus extraction protocol, prepared nuclei and wrote the manuscript. Y.C.W. preformed 10X snRNA-seq protocol. C. Nascimento performed 10X snATAC-seq protocol. A.C. performed snATAC-seq data analysis. M.S. and J.F.T. guided bioinformatic analysis. N.M. contributed to tissue processing and data interpretation. J.R. provided technical single-cell expertise and experimental support. G.T. provided general oversight, including in experimental design. All authors contributed to manuscript preparation.

Corresponding author

Correspondence to Gustavo Turecki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Rebecca D. Hodge and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Jessa, S. et al. Nat. Genet. 51, 1702–1713 (2019): https://doi.org/10.1038/s41588-019-0531-7

Reiner, B. C. et al. Preprint at bioRxiv (2020): https://doi.org/10.1101/2020.07.29.227355

Nagy, C. et al. Nat. Neurosci. 23, 771–781 (2020): https://doi.org/10.1038/s41593-020-0621-y

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maitra, M., Nagy, C., Chawla, A. et al. Extraction of nuclei from archived postmortem tissues for single-nucleus sequencing applications. Nat Protoc 16, 2788–2801 (2021). https://doi.org/10.1038/s41596-021-00514-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00514-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research