Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Use of human peripheral blood mononuclear cells to define immunological properties of nucleic acid nanoparticles

Abstract

This protocol assesses proinflammatory properties of nucleic acid nanoparticles (NANPs) using a validated preclinical model, peripheral blood mononuclear cells (PBMCs), that is highly predictive of cytokine responses. The experimental procedure details the preparation of pyrogen-free NANPs, isolation of PBMCs from freshly collected human blood, and analysis of characteristic biomarkers (type I and III interferons) produced by PBMCs transfected with NANPs. Although representative NANPs with high and low immunostimulatory potential are used as standards throughout the procedure, this protocol can be adapted to any NANPs or therapeutic nucleic acids, irrespective of whether they are carrier based or carrier free; additional cytokine biomarkers can also be included. We test several commercial platforms and controls broadly accessible to the research community to quantify all biomarkers in either single- or multiplex format. The continuous execution of this protocol takes <48 h; when immediate analysis is not feasible, single-use aliquots of the supernatants can be frozen and stored (−20 °C; 12 months).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The main strategies for NANP design.
Fig. 2: Schematic representation of the experimental design required to assess the immunological properties of NANPs and their interactions with PBMCs.
Fig. 3: Verification that NANPs retain structural integrity upon complexation with Lipofectamine 2000, and of their cellular uptake.

Data availability

The data presented in this article have been published before17,23,25,26,31,33 and are available to users without restrictions other than the copyright.

References

  1. 1.

    Leontis, N. B., Stombaugh, J. & Westhof, E. The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 30, 3497–3531 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Bindewald, E., Hayes, R., Yingling, Y. G., Kasprzak, W. & Shapiro, B. A. RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign. Nucleic Acids Res. 36, D392–D397 (2008).

    CAS  PubMed  Google Scholar 

  3. 3.

    Parlea, L. et al. Ring Catalog: a resource for designing self-assembling RNA nanostructures. Methods 103, 128–137 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Parlea, L. G., Sweeney, B. A., Hosseini-Asanjan, M., Zirbel, C. L. & Leontis, N. B. The RNA 3D Motif Atlas: computational methods for extraction, organization and evaluation of RNA motifs. Methods 103, 99–119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Geary, C., Chworos, A., Verzemnieks, E., Voss, N. R. & Jaeger, L. Composing RNA nanostructures from a syntax of RNA structural modules. Nano Lett. 17, 7095–7101 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Weng, Y. et al. Improved nucleic acid therapy with advanced nanoscale biotechnology. Mol. Ther. Nucleic Acids 19, 581–601 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Afonin, K. A. et al. Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat. Protoc. 6, 2022–2034 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Jasinski, D., Haque, F., Binzel, D. W. & Guo, P. Advancement of the emerging field of RNA nanotechnology. ACS Nano 11, 1142–1164 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Jaeger, L., Westhof, E. & Leontis, N. B. TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res. 29, 455–463 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Jaeger, L. & Leontis, N. B. Tecto-RNA: one-dimensional self-assembly through tertiary interactions. Angew. Chem. Int. Ed. Engl. 39, 2521–2524 (2000).

    CAS  PubMed  Google Scholar 

  11. 11.

    Ohno, H. et al. Synthetic RNA-protein complex shaped like an equilateral triangle. Nat. Nanotechnol. 6, 116–120 (2011).

    CAS  PubMed  Google Scholar 

  12. 12.

    Dibrov, S. M., McLean, J., Parsons, J. & Hermann, T. Self-assembling RNA square. Proc. Natl Acad. Sci. USA 108, 6405–6408 (2011).

    CAS  PubMed  Google Scholar 

  13. 13.

    Boerneke, M. A., Dibrov, S. M. & Hermann, T. Crystal-structure-guided design of self-assembling RNA nanotriangles. Angew. Chem. Int. Ed. Engl. 55, 4097–4100 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Afonin, K. A. et al. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat. Nanotechnol. 5, 676–682 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Chidchob, P. & Sleiman, H. F. Recent advances in DNA nanotechnology. Curr. Opin. Chem. Biol. 46, 63–70 (2018).

    CAS  PubMed  Google Scholar 

  16. 16.

    Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  PubMed  Google Scholar 

  17. 17.

    Afonin, K. A. et al. Triggering of RNA interference with RNA-RNA, RNA-DNA, and DNA-RNA nanoparticles. ACS Nano 9, 251–259 (2015).

    CAS  PubMed  Google Scholar 

  18. 18.

    Afonin, K. A. et al. Multifunctional RNA nanoparticles. Nano Lett. 14, 5662–5671 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Li, H. et al. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. Nano Today 10, 631–655 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Shu, D., Shu, Y., Haque, F., Abdelmawla, S. & Guo, P. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat. Nanotechnol. 6, 658–667 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Khisamutdinov, E. F. et al. Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic Acids Res. 42, 9996–10004 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Halman, J. R. et al. Functionally-interdependent shape-switching nanoparticles with controllable properties. Nucleic Acids Res. 45, 2210–2220 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Johnson, M. B. et al. Programmable nucleic acid based polygons with controlled neuroimmunomodulatory properties for predictive QSAR modeling. Small 13, 1701255 (2017).

  25. 25.

    Hong, E. et al. Structure and composition define immunorecognition of nucleic acid nanoparticles. Nano Lett. 18, 4309–4321 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Hong, E. et al. Toll-like receptor-mediated recognition of nucleic acid nanoparticles (NANPs) in human primary blood cells. Molecules 24, 1094 (2019).

  27. 27.

    Bindewald, E. et al. Multistrand structure prediction of nucleic acid assemblies and design of RNA switches. Nano Lett. 16, 1726–1735 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Dobrovolskaia, M. A. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: challenges, considerations and strategy. J. Control. Release 220, 571–583 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Panigaj, M. et al. Aptamers as modular components of therapeutic nucleic acid nanotechnology. ACS Nano 13, 12301–12321 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Chandler, M. & Afonin, K. A. Smart-responsive nucleic acid nanoparticles (NANPs) with the potential to modulate immune behavior. Nanomaterials (Basel) 9, 611 (2019).

  31. 31.

    Sajja, S. et al. Dynamic behavior of RNA nanoparticles analyzed by AFM on a mica/air interface. Langmuir 34, 15099–15108 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Ke, W. et al. RNA-DNA fibers and polygons with controlled immunorecognition activate RNAi, FRET and transcriptional regulation of NF-kB in human cells. Nucleic Acids Res. 47, 1350–1361 (2019).

    CAS  PubMed  Google Scholar 

  33. 33.

    Rackley, L. et al. RNA fibers as optimized nanoscaffolds for siRNA coordination and reduced immunological recognition. Adv. Funct. Mater. 28, 1805959 (2018).

  34. 34.

    Vessillier, S. et al. Cytokine release assays for the prediction of therapeutic mAb safety in first-in man trials—whole blood cytokine release assays are poorly predictive for TGN1412 cytokine storm. J. Immunol. Methods 424, 43–52 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Gregg, K. A. et al. Rationally designed TLR4 ligands for vaccine adjuvant discovery. mBio 8, e00492-17 (2017).

  36. 36.

    Oh, D. Y. et al. Adjuvant-induced human monocyte secretome profiles reveal adjuvant- and age-specific protein signatures. Mol. Cell. Proteom. 15, 1877–1894 (2016).

    CAS  Google Scholar 

  37. 37.

    Chandler, M., Johnson, B., Panigaj, M. & Afonin, K. A. Innate immune responses triggered by nucleic acids inspire the design of immunomodulatory nucleic acid nanoparticles (NANPs). Curr. Opin. Biotechnol. 63, 8–15 (2020).

    CAS  PubMed  Google Scholar 

  38. 38.

    Wei, M. et al. Polyvalent immunostimulatory nanoagents with self-assembled CpG oligonucleotide-conjugated gold nanoparticles. Angew. Chem. Int. Ed. Engl. 51, 1202–1206 (2012).

    CAS  PubMed  Google Scholar 

  39. 39.

    Radovic-Moreno, A. F. et al. Immunomodulatory spherical nucleic acids. Proc. Natl Acad. Sci. USA 112, 3892–3897 (2015).

    CAS  PubMed  Google Scholar 

  40. 40.

    Li, J. et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5, 8783–8789 (2011).

    CAS  PubMed  Google Scholar 

  41. 41.

    Liu, X. et al. A DNA nanostructure platform for directed assembly of synthetic vaccines. Nano Lett. 12, 4254–4259 (2012).

    CAS  PubMed  Google Scholar 

  42. 42.

    Wang, S. et al. Rational vaccinology with spherical nucleic acids. Proc. Natl Acad. Sci. USA 116, 10473–10481 (2019).

    CAS  PubMed  Google Scholar 

  43. 43.

    Hong, E. & Dobrovolskaia, M. A. Addressing barriers to effective cancer immunotherapy with nanotechnology: achievements, challenges, and roadmap to the next generation of nanoimmunotherapeutics. Adv. Drug Deliv. Rev. 141, 3-22 (2018).

  44. 44.

    Dobrovolskaia, M. A. Nucleic acid nanoparticles at a crossroads of vaccines and immunotherapies. Molecules 24, 4620 (2019).

  45. 45.

    Kondo, S. & Sauder, D. N. Tumor necrosis factor (TNF) receptor type 1 (p55) is a main mediator for TNF-alpha-induced skin inflammation. Eur. J. Immunol. 27, 1713–1718 (1997).

    CAS  PubMed  Google Scholar 

  46. 46.

    Phillips, A., Patel, C., Pillsbury, A., Brotherton, J. & Macartney, K. Safety of human papillomavirus vaccines: an updated review. Drug Saf. 41, 329–346 (2018).

    CAS  PubMed  Google Scholar 

  47. 47.

    Miller, E. R. et al. Post-licensure safety surveillance of zoster vaccine live (Zostavax®) in the United States, Vaccine Adverse Event Reporting System (VAERS), 2006-2015. Hum. Vaccin. Immunother. 14, 1963-1969 (2018).

  48. 48.

    Woo, E. J., Moro, P. L., Cano, M. & Jankosky, C. Postmarketing safety surveillance of trivalent recombinant influenza vaccine: reports to the Vaccine Adverse Event Reporting System. Vaccine 35, 5618–5621 (2017).

    PubMed  Google Scholar 

  49. 49.

    Gause, K. T. et al. Immunological principles guiding the rational design of particles for vaccine delivery. ACS Nano 11, 54–68 (2017).

    CAS  PubMed  Google Scholar 

  50. 50.

    Di Franco, S., Turdo, A., Todaro, M. & Stassi, G. Role of type I and II interferons in colorectal cancer and melanoma. Front. Immunol. 8, 878 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    CAS  PubMed  Google Scholar 

  52. 52.

    Chan, A. et al. Preclinical development of a subcutaneous ALAS1 RNAi therapeutic for treatment of hepatic porphyrias using circulating RNA quantification. Mol. Ther. Nucleic Acids 4, e263 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Halman, J. R. et al. A cationic amphiphilic co-polymer as a carrier of nucleic acid nanoparticles (NANPS) for controlled gene silencing, immunostimulation, and biodistribution. Nanomedicine 23, 102094 (2020).

    CAS  PubMed  Google Scholar 

  54. 54.

    Bui, M. N. et al. Versatile RNA tetra-U helix linking motif as a toolkit for nucleic acid nanotechnology. Nanomedicine 13, 1137–1146 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Ozaki, K. & Leonard, W. J. Cytokine and cytokine receptor pleiotropy and redundancy. J. Biol. Chem. 277, 29355–29358 (2002).

    CAS  PubMed  Google Scholar 

  56. 56.

    Potter, T. M., Neun, B. W., Rodriguez, J. C., Ilinskaya, A. N. & Dobrovolskaia, M. A. Analysis of pro-inflammatory cytokine and type II interferon induction by nanoparticles. Methods Mol. Biol. 1682, 173–187 (2018).

    CAS  PubMed  Google Scholar 

  57. 57.

    Centers for Disease Control and Prevention. Biosafety in Microbiological and Biomedical Laboratories 5th edn (US Department of Health and Human Services, 2009).

  58. 58.

    Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 21, A.3B.1–A.3B.2 (2001).

    Google Scholar 

  59. 59.

    Radvanyi, L. G., Banerjee, A., Weir, M. & Messner, H. Low levels of interferon-α induce CD86 (B7.2) expression and accelerates dendritic cell maturation from human peripheral blood mononuclear cells. Scand. J. Immunol. 50, 499–509 (1999).

    CAS  PubMed  Google Scholar 

  60. 60.

    Tam, M. A. & Wick, M. J. MyD88 and interferon-α/β are differentially required for dendritic cell maturation but dispensable for development of protective memory against Listeria. Immunology 128, 429–438 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Trepiakas, R., Pedersen, A. E., Met, O. & Svane, I. M. Addition of interferon-alpha to a standard maturation cocktail induces CD38 up-regulation and increases dendritic cell function. Vaccine 27, 2213–2219 (2009).

    CAS  PubMed  Google Scholar 

  62. 62.

    Floros, T. & Tarhini, A. A. Anticancer cytokines: biology and clinical effects of interferon-α2, interleukin (IL)-2, IL-15, IL-21, and IL-12. Semin. Oncol. 42, 539–548 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Cheknev, S. B., Kobyakina, N. A., Mezentseva, M. V. & Skvortsova, V. I. Long-term study of interferon system state in patients with multiple sclerosis received the individual immune therapy with human recombinant IFN-alpha. Russ. J. Immunol. 6, 39–46 (2001).

    CAS  PubMed  Google Scholar 

  64. 64.

    Bongioanni, M. R. et al. Systemic high-dose recombinant-alpha-2a-interferon therapy modulates lymphokine production in multiple sclerosis. J. Neurol. Sci. 143, 91–99 (1996).

    CAS  PubMed  Google Scholar 

  65. 65.

    Kujawski, L. A. & Talpaz, M. The role of interferon-alpha in the treatment of chronic myeloid leukemia. Cytokine Growth Factor Rev. 18, 459–471 (2007).

    CAS  PubMed  Google Scholar 

  66. 66.

    Rong, L. & Perelson, A. S. Modeling HIV persistence, the latent reservoir, and viral blips. J. Theor. Biol. 260, 308–331 (2009).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Stiff, A. & Carson, W. III Investigations of interferon-lambda for the treatment of cancer. J. Innate Immun. 7, 243–250 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Filipi, M. L. et al. Nurses’ perspective on approaches to limit flu-like symptoms during interferon therapy for multiple sclerosis. Int. J. MS Care 16, 55–60 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Rosenberg, A. S. Immunogenicity of biological therapeutics: a hierarchy of concerns. Dev. Biol. (Basel) 112, 15–21 (2003).

    CAS  Google Scholar 

  70. 70.

    Baker, M. P., Reynolds, H. M., Lumicisi, B. & Bryson, C. J. Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self Nonself 1, 314–322 (2010).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Chang, C. J. et al. A genome-wide association study identifies a novel susceptibility locus for the immunogenicity of polyethylene glycol. Nat. Commun. 8, 522 (2017).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Chen, B. M. et al. Measurement of pre-existing IgG and IgM antibodies against polyethylene glycol in healthy individuals. Anal. Chem. 88, 10661–10666 (2016).

    CAS  PubMed  Google Scholar 

  73. 73.

    Chen, W. W., Zhang, X. & Huang, W. J. Role of neuroinflammation in neurodegenerative diseases (Review). Mol. Med. Rep. 13, 3391–3396 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Hsieh, Y. C. et al. Pre-existing anti-polyethylene glycol antibody reduces the therapeutic efficacy and pharmacokinetics of PEGylated liposomes. Theranostics 8, 3164–3175 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Cruz-Acuna, M., Halman, J. R., Afonin, K. A., Dobson, J. & Rinaldi, C. Magnetic nanoparticles loaded with functional RNA nanoparticles. Nanoscale 10, 17761–17770 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by federal funds from the National Cancer Institute, National Institutes of Health, under contracts HHSN261200800001E and 75N91019D00024 (to M.A.D.). The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. Research reported in this publication was also supported by the National Institute of General Medical Sciences of the National Institutes of Health under award no. R01GM120487 (to K.A.A.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors thank J. Halman and M. Chandler of the University of North Carolina at Charlotte and E. Hong and E. Cedrone of the Nanotechnology Characterization Lab, National Cancer Institute, for excellent technical assistance.

Author information

Affiliations

Authors

Contributions

M.A.D. and K.A.A. conceived the study, developed and validated the protocol and co-wrote the manuscript.

Corresponding authors

Correspondence to Marina A. Dobrovolskaia or Kirill A. Afonin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Remi Creusot, Chunhai Fan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Hong, E. et al. Nano Lett. 18, 4309–4321 (2018): https://doi.org/10.1021/acs.nanolett.8b01283

Rackley, L. et al. Adv. Funct. Mater. 28, 1805959 (2018): https://doi.org/10.1002/adfm.201805959

Hong, E. et al. Molecules 24, 1094 (2019): https://doi.org/10.3390/molecules24061094

Afonin, K. A. et al. Nat. Protoc. 6, 2022–2034 (2011): https://doi.org/10.1038/nprot.2011.418

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dobrovolskaia, M.A., Afonin, K.A. Use of human peripheral blood mononuclear cells to define immunological properties of nucleic acid nanoparticles. Nat Protoc 15, 3678–3698 (2020). https://doi.org/10.1038/s41596-020-0393-6

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing