Abstract
The label-free analysis of biomarkers offers important advantages in developing point-of-care (PoC) biosensors. In contrast to label-based methodologies, such as ELISA, label-free analysis enables direct detection of targets without additional steps and labeled reagents. Nonetheless, label-free approaches require high sensitivity to detect the intrinsic features of a biomarker and low levels of nonspecific signals. Electrochemical capacitance, \(C_{\bar \mu }\), is a feature of electroactive nanoscale films that can be measured using electrochemical impedance spectroscopy. \(C_{\bar \mu }\) is promising as an electrochemical transducing signal for the development of high-sensitivity, reagentless and label-free molecular diagnostic assays. We used a proprietary ferrocene (Fc)-tagged peptide that is able to self-assemble onto gold electrodes (thicknesses <2 nm) to which any biological receptor can be coupled. When coupled with biological receptors (e.g., a monoclonal antibody), \(C_{\bar \mu }\) exhibited by the redox-tagged peptide changes as a function of the target concentration. We provide herein the steps for the qualitative and quantitative detection of dengue non-structural protein 1 (NS1) biomarker. Detection of NS1 can be used to diagnose dengue virus infection, which causes epidemics each year in tropical and subtropical regions of the world. Including the pre-treatment of the electrode surface, the analysis takes ~25 h. This time can be reduced to minutes if the electrode surface is fabricated separately, demonstrating that \(C_{\bar \mu }\) is promising for PoC applications. We hope this protocol will serve as a reference point for researchers and companies that intend to further develop capacitive devices for molecular diagnostic assays.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout







Data availability
Data are available from the authors upon request.
References
Ray, S., Mehta, G. & Srivastava, S. Label-free detection techniques for protein microarrays: prospects, merits and challenges. Proteomics 10, 731–748 (2010).
Lisdat, F. & Schäfer, D. The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 391, 1555–1567 (2008).
Garrote, B. L., Santos, A. & Bueno, P. R. Perspectives on and precautions for the uses of electric spectroscopic methods in label-free biosensing applications. ACS Sens 4, 2216–2227 (2019).
Bueno, P. R. Common principles of molecular electronics and nanoscale electrochemistry. Anal. Chem. 90, 7095–7106 (2018).
Bueno, P. R. Nanoscale origins of super-capacitance phenomena. J. Power Sources 414, 420–434 (2019).
Bueno, P. R., Fernandes, F. C. B. & Davis, J. J. Quantum capacitance as a reagentless molecular sensing element. Nanoscale 9, 15362–15370 (2017).
Fernandes, F. C. B., Patil, A. V., Bueno, P. R. & Davis, J. J. Optimized diagnostic assays based on redox tagged bioreceptive interfaces. Anal. Chem. 87, 12137–12144 (2015).
Cecchetto, J., Fernandes, F. C. B., Lopes, R. & Bueno, P. R. The capacitive sensing of NS1 Flavivirus biomarker. Biosens. Bioelectron. 87, 949–956 (2017).
Piccoli, J. et al. Redox capacitive assaying of C-reactive protein at a peptide supported aptamer interface. Anal. Chem. 90, 3005–3008 (2018).
Oliveira, R. M. B., Fernandes, F. C. B. & Bueno, P. R. Pseudocapacitance phenomena and applications in biosensing devices. Electrochim. Acta 306, 175–184 (2019).
Miranda, D. A. & Bueno, P. R. Density functional theory and an experimentally-designed energy functional of electron density. Phys. Chem. Chem. Phys. 18, 25984–25992 (2016).
Bueno, P. R. Nanoscale Electrochemistry of Molecular Contacts (Springer, 2018).
Garrote, B. L., Fernandes, F. C. B., Cilli, E. M. & Bueno, P. R. Field effect in molecule-gated switches and the role of target-to-receptor size ratio in biosensor sensitivity. Biosens. Bioelectron. 127, 215–220 (2019).
Bueno, P. R., Benites, T. A. & Davis, J. J. The mesoscopic electrochemistry of molecular junctions. Sci. Rep. 6, 18400 (2016).
Fernandes, F. C. B., Góes, M. S., Davis, J. J. & Bueno, P. R. Label free redox capacitive biosensing. Biosens. Bioelectron. 50, 437–440 (2013).
Santos, A., Piccoli, J. P., Santos-Filho, N. A., Cilli, E. M. & Bueno, P. R. Redox-tagged peptide for capacitive diagnostic assays. Biosens. Bioelectron. 68, 281–287 (2015).
Fernandes, F. C. B., Santos, A., Martins, D. C., Góes, M. S. & Bueno, P. R. Comparing label free electrochemical impedimetric and capacitive biosensing architectures. Biosens. Bioelectron. 57, 96–102 (2014).
Lehr, J., Fernandes, F. C. B., Bueno, P. R. & Davis, J. J. Label-free capacitive diagnostics: exploiting local redox probe state occupancy. Anal. Chem. 86, 2559–2564 (2014).
Baradoke, A., Hein, R., Li, X. & Davis, J. J. Reagentless redox capacitive assaying of C-reactive protein at a polyaniline interface. Anal. Chem. 92, 3508–3511 (2020).
Fernandes, F. C. B. & Bueno, P. R. Optimized electrochemical biosensor for human prostatic acid phosphatase. Sens. Actuators B Chem. 253, 1106–1112 (2017).
Santos, A., Bueno, P. R. & Davis, J. J. A dual marker label free electrochemical assay for Flavivirus dengue diagnosis. Biosens. Bioelectron. 100, 519–525 (2018).
Ben Aissa, S., Mars, A., Catanante, G., Marty, J. L. & Raouafi, N. Design of a redox-active surface for ultrasensitive redox capacitive aptasensing of aflatoxin M1 in milk. Talanta 195, 525–532 (2019).
Cecchetto, J., Santos, A., Mondini, A., Cilli, E. M. & Bueno, P. R. Serological point-of-care and label-free capacitive diagnosis of dengue virus infection. Biosens. Bioelectron. 151, 111972 (2020).
Nunes, P. C. G. et al. 30 years of fatal dengue cases in Brazil: a review. BMC Public Health 19, 329 (2019).
Carvalhal, R. F., Freire, R. S. & Kubota, L. T. Polycrystalline gold electrodes: a comparative study of pretreatment procedures used for cleaning and thiol self-assembly monolayer formation. Electroanalysis 17, 1251–1259 (2005).
Ron, H. & Rubinstein, I. Self-assembled monolayers on oxidized metals. 3. Alkylthiol and dialkyl disulfide assembly on gold under electrochemical conditions. J. Am. Chem. Soc. 120, 13444–13452 (1998).
Wang, J. et al. Shape-dependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation. Chem. Commun. (Camb.) 47, 6894–6894 (2011).
Hermanson, G. T. Bioconjugate reagents. in Bioconjugate Techniques 2nd edn, 214–233 (Academic Press, 2008).
Hosseini, S., Vázquez-Villegas, P., Rito-Palomares, M. & Martinez-Chapa, S. O. Advantages, disadvantages, and modifications of conventional ELISA. in Enzyme-linked Immunosorbent Assay (ELISA): From A to Z 67–115 (Springer, 2018).
Maurer, J. J. Rapid detection and limitations of molecular techniques. Ann. Rev. Food Sci. Technol. 2, 259–279 (2011).
Chang, B.-Y. & Park, S.-M. Electrochemical impedance spectroscopy. Ann. Rev. Anal. Chem. 3, 207–229 (2010).
Trilling, A. K., Beekwilder, J. & Zuilhof, H. Antibody orientation on biosensor surfaces: a minireview. Analyst 138, 1619–1627 (2013).
Trasatti, S. & Petrii, O. A. Real surface area measurements in electrochemistry. Pure Appl. Chem. 63, 711–734 (1991).
Acknowledgements
B.L.G. and A.S. acknowledge the support of FAPESP for their scholarship (2018/26273-7 and 2016/17185-1, respectively), and P.R.B. acknowledges the support of FAPESP for the financial support (2017/24839-0 and 2017/02974-3). P.R.B. also acknowledges the individual support by CNPq provided to his head of research activities at São Paulo State University.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Key references using this protocol
Cecchetto, J. et. al. Biosens. Bioelectron. 151, 111972 (2020): https://www.sciencedirect.com/science/article/pii/S0956566319310498?via%3Dihub
Piccoli, J. et. al. Anal. Chem. 90, 3005–3008 (2018): https://pubs.acs.org/doi/10.1021/acs.analchem.7b05374
Oliveira, R. M. B., Fernandes, F. C. B. & Bueno, P. R. Electrochim. Acta 306, 175–184 (2019): https://www.sciencedirect.com/science/article/pii/S0013468619304906
Baradoke, A. et. al. Anal. Chem. 92, 3508–3511 (2020): https://pubs.acs.org/doi/10.1021/acs.analchem.9b05633
Ben Aissa, S. et. al. Talanta 195, 525–532 (2019): https://www.sciencedirect.com/science/article/pii/S0039914018311779
Key data used in this protocol
Cecchetto, J. et. al. Biosens. Bioelectron. 151, 111972 (2020): https://www.sciencedirect.com/science/article/pii/S0956566319310498?via%3Dihub
Supplementary information
Supplementary Information
Supplementary Information 1 and 2.
Rights and permissions
About this article
Cite this article
Garrote, B.L., Santos, A. & Bueno, P.R. Label-free capacitive assaying of biomarkers for molecular diagnostics. Nat Protoc 15, 3879–3893 (2020). https://doi.org/10.1038/s41596-020-0390-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41596-020-0390-9
This article is cited by
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.