Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A standardized social preference protocol for measuring social deficits in mouse models of autism

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication deficits and other behavioral abnormalities. The three-chamber social preference test is often used to assess social deficits in mouse models of ASD. However, varying and often contradicting phenotypic descriptions of ASD mouse models can be found in the scientific literature, and the substantial variability in the methods used by researchers to assess social deficits in mice could be a contributing factor. Here we describe a standardized three-chamber social preference protocol, which is sensitive and reliable at detecting social preference deficits in several mouse models of ASD. This protocol comprises three phases that can all be completed within 1 d. The test mouse is first habituated to the apparatus containing two empty cups in the side chambers, followed by the pre-test phase in which the mouse can interact with two identical inanimate objects placed in the cups. During the test phase, the mouse is allowed to interact with a social stimulus (an unfamiliar wild-type (WT) mouse) contained in one cup and a novel non-social stimulus contained in the other cup. The protocol is thus designed to assess preference between social and non-social stimuli under conditions of equal salience. The broad implementation of the three-chamber social preference protocol presented here should improve the accuracy and consistency of assessments for social preference deficits associated with ASD and other psychiatric disorders.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Social behavioral data obtained from several transgenic mouse models using the three-phase S–NS protocol.
Fig. 2: Social behavioral data obtained from several ASD mouse models using the two-phase S–E protocol.

Data availability

An Excel file containing all the statistical data for the two figures is included in the Source Data for Figs. 1 and 2.

References

  1. De Rubeis, S. & Buxbaum, J. D. Genetics and genomics of autism spectrum disorder: embracing complexity. Hum. Mol. Genet. 24, R24–R31 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584 e523 (2020).

    CAS  PubMed  Google Scholar 

  3. Leblond, C. S. et al. Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet. 10, e1004580 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Betancur, C. & Buxbaum, J. D. SHANK3 haploinsufficiency: a “common” but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol. Autism 4, 17 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar, R. A. et al. Recurrent 16p11.2 microdeletions in autism. Hum. Mol. Genet. 17, 628–638 (2008).

    CAS  PubMed  Google Scholar 

  6. Weiss, L. A. et al. Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med. 358, 667–675 (2008).

    CAS  PubMed  Google Scholar 

  7. Duffney, L. J. et al. Autism-like deficits in shank3-deficient mice are rescued by targeting actin regulators. Cell Rep. 11, 1400–1413 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Qin, L. et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat. Neurosci. 21, 564–575 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rein, B., Yan, Z. & Wang, Z. J. Diminished social interaction incentive contributes to social deficits in mouse models of autism spectrum disorder. Genes Brain Behav. 19, e12610 (2019).

    PubMed  Google Scholar 

  10. Wang, W. et al. Chemogenetic activation of prefrontal cortex rescues synaptic and behavioral deficits in a mouse model of 16p11.2 deletion syndrome. J. Neurosci. 38, 5939–5948 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rein, B. et al. Reversal of synaptic and behavioral deficits in a 16p11.2 duplication mouse model via restoration of the GABA synapse regulator Npas4. Mol. Psychiatry https://doi.org/10.1038/s41380-020-0693-9 (2020).

  12. Yang, M., Silverman, J. L. & Crawley, J. N. Automated three-chambered social approach task for mice. Curr. Protoc. Neurosci. Chapter 8, Unit 8.26 (2011).

  13. Jamain, S. et al. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc. Natl Acad. Sci. USA 105, 1710–1715 (2008).

    CAS  PubMed  Google Scholar 

  14. Page, D. T., Kuti, O. J., Prestia, C. & Sur, M. Haploinsufficiency for Pten and Serotonin transporter cooperatively influences brain size and social behavior. Proc. Natl Acad. Sci. USA 106, 1989–1994 (2009).

    CAS  PubMed  Google Scholar 

  15. Peca, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Won, H. et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486, 261–265 (2012).

    CAS  PubMed  Google Scholar 

  17. Schmeisser, M. J. et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486, 256–260 (2012).

    CAS  PubMed  Google Scholar 

  18. Kouser, M. et al. Loss of predominant Shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission. J. Neurosci. 33, 18448–18468 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bidinosti, M. et al. CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Science 351, 1199–1203 (2016).

    CAS  PubMed  Google Scholar 

  20. Wang, X. et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum. Mol. Genet. 20, 3093–3108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Drapeau, E., Dorr, N. P., Elder, G. A. & Buxbaum, J. D. Absence of strong strain effects in behavioral analyses of Shank3-deficient mice. Dis. Model. Mech. 7, 667–681 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Radyushkin, K. et al. Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes Brain Behav. 8, 416–425 (2009).

    CAS  PubMed  Google Scholar 

  23. Jung, E. M. et al. Arid1b haploinsufficiency disrupts cortical interneuron development and mouse behavior. Nat. Neurosci. 20, 1694–1707 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, M. et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J. Neurosci. 32, 6525–6541 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rapanelli, M. et al. Behavioral, circuitry, and molecular aberrations by region-specific deficiency of the high-risk autism gene Cul3. Mol. Psychiatry https://doi.org/10.1038/s41380-019-0498-x (2019).

  26. Nadler, J. J. et al. Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav. 3, 303–314 (2004).

    CAS  PubMed  Google Scholar 

  27. Penagarikano, O. et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147, 235–246 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Grayton, H. M., Missler, M., Collier, D. A. & Fernandes, C. Altered social behaviours in neurexin 1alpha knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS ONE 8, e67114 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Silverman, J. L. et al. Sociability and motor functions in Shank1 mutant mice. Brain Res. 1380, 120–137 (2011).

    CAS  PubMed  Google Scholar 

  30. Brunner, D. et al. Comprehensive analysis of the 16p11.2 deletion and null Cntnap2 mouse models of autism spectrum disorder. PLoS ONE 10, e0134572 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Wang, Z. J. et al. Amelioration of autism-like social deficits by targeting histone methyltransferases EHMT1/2 in Shank3-deficient mice. Mol. Psychiatry https://doi.org/10.1038/s41380-019-0351-2 (2019).

  32. Durand, C. M. et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat. Genet. 39, 25–27 (2007).

    CAS  PubMed  Google Scholar 

  33. Moessner, R. et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am. J. Hum. Genet. 81, 1289–1297 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tu, Z. et al. CRISPR/Cas9-mediated disruption of SHANK3 in monkey leads to drug-treatable autism-like symptoms. Hum. Mol. Genet. 28, 561–571 (2019).

    CAS  PubMed  Google Scholar 

  35. Zhou, Y. et al. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature 570, 326–331 (2019).

    CAS  PubMed  Google Scholar 

  36. Ma, K. et al. Histone deacetylase inhibitor MS-275 restores social and synaptic function in a Shank3-deficient mouse model of autism. Neuropsychopharmacology 43, 1779–1788 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Speed, H. E. et al. Autism-associated insertion mutation (InsG) of Shank3 Exon 21 causes impaired synaptic transmission and behavioral deficits. J. Neurosci. 35, 9648–9665 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bitanihirwe, B. K., Peleg-Raibstein, D., Mouttet, F., Feldon, J. & Meyer, U. Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia. Neuropsychopharmacology 35, 2462–2478 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, X. et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat. Commun. 7, 11459 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Drapeau, E., Riad, M., Kajiwara, Y. & Buxbaum, J. D. Behavioral phenotyping of an improved mouse model of Phelan-McDermid syndrome with a complete deletion of the Shank3 gene. eNeuro 5, ENEURO.0046-18.2018 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. Jiang, Y. H. & Ehlers, M. D. Modeling autism by SHANK gene mutations in mice. Neuron 78, 8–27 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kwon, C. H. et al. Pten regulates neuronal arborization and social interaction in mice. Neuron 50, 377–388 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Eissa, N. et al. The histamine H3R antagonist DL77 attenuates autistic behaviors in a prenatal valproic acid-induced mouse model of autism. Sci. Rep. 8, 13077 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Imai, K. et al. Administration of molecular hydrogen during pregnancy improves behavioral abnormalities of offspring in a maternal immune activation model. Sci. Rep. 8, 9221 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Zain, M. A., Pandy, V., Majeed, A. B. A., Wong, W. F. & Mohamed, Z. Chronic restraint stress impairs sociability but not social recognition and spatial memoryin C57BL/6J mice. Exp. Anim. 68, 113–124 (2019).

    CAS  PubMed  Google Scholar 

  46. Carta, I., Chen, C. H., Schott, A. L., Dorizan, S. & Khodakhah, K. Cerebellar modulation of the reward circuitry and social behavior. Science 363, eaav0581 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Arbogast, T. et al. reciprocal effects on neurocognitive and metabolic phenotypes in mouse models of 16p11.2 deletion and duplication syndromes. PLoS Genet. 12, e1005709 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. Stoppel, L. J. et al. R-Baclofen reverses cognitive deficits and improves social interactions in two lines of 16p11.2 deletion mice. Neuropsychopharmacology 43, 513–524 (2018).

    CAS  PubMed  Google Scholar 

  49. Yang, M. et al. 16p11.2 deletion syndrome mice display sensory and ultrasonic vocalization deficits during social interactions. Autism Res. 8, 507–521 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Marco, E. J., Hinkley, L. B., Hill, S. S. & Nagarajan, S. S. Sensory processing in autism: a review of neurophysiologic findings. Pediatr. Res. 69, 48R–54R (2011).

    PubMed  PubMed Central  Google Scholar 

  51. Balasco, L., Provenzano, G. & Bozzi, Y. Sensory abnormalities in autism spectrum disorders: a focus on the tactile domain, from genetic mouse models to the clinic. Front. Psychiatry 10, 1016 (2019).

    PubMed  Google Scholar 

  52. Salchner, P., Lubec, G. & Singewald, N. Decreased social interaction in aged rats may not reflect changes in anxiety-related behaviour. Behav. Brain Res. 151, 1–8 (2004).

    PubMed  Google Scholar 

  53. Boyer, F., Jaouen, F., Ibrahim, E. C. & Gascon, E. Deficits in social behavior precede cognitive decline in middle-aged mice. Front. Behav. Neurosci. 13, 55 (2019).

    PubMed  PubMed Central  Google Scholar 

  54. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. Bronzuoli, M. R. et al. Neuroglia in the autistic brain: evidence from a preclinical model. Mol. Autism 9, 66 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kappel, S., Hawkins, P. & Mendl, M. T. To group or not to group? Good practice for housing male laboratory mice. Animals (Basel) 7, 88 (2017).

    PubMed Central  Google Scholar 

  57. Kalbassi, S., Bachmann, S. O., Cross, E., Roberton, V. H. & Baudouin, S. J. Male and female mice lacking neuroligin-3 modify the behavior of their wild-type littermates. eNeuro 4, ENEURO.0145-17.2017 (2017).

    PubMed  PubMed Central  Google Scholar 

  58. Yang, M., Lewis, F., Foley, G. & Crawley, J. N. In tribute to Bob Blanchard: divergent behavioral phenotypes of 16p11.2 deletion mice reared in same-genotype versus mixed-genotype cages. Physiol. Behav. 146, 16–27 (2015).

    CAS  PubMed  Google Scholar 

  59. Yamaguchi, H. et al. Environmental enrichment attenuates behavioral abnormalities in valproic acid-exposed autism model mice. Behav. Brain Res. 333, 67–73 (2017).

    CAS  PubMed  Google Scholar 

  60. Phelan, M. C. Deletion 22q13.3 syndrome. Orphanet J. Rare Dis. 3, 14 (2008).

    PubMed  PubMed Central  Google Scholar 

  61. Green Snyder, L. et al. Autism spectrum disorder, developmental and psychiatric features in 16p11.2 duplication. J. Autism Dev. Disord. 46, 2734–2748 (2016).

    PubMed  Google Scholar 

  62. Horev, G. et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc. Natl Acad. Sci. USA 108, 17076–17081 (2011).

    PubMed  Google Scholar 

  63. Portmann, T. et al. Behavioral abnormalities and circuit defects in the basal ganglia of a mouse model of 16p11.2 deletion syndrome. Cell Rep. 7, 1077–1092 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sanyal, S. & Van Tol, H. H. Review the role of dopamine D4 receptors in schizophrenia and antipsychotic action. J. Psychiatr. Res. 31, 219–232 (1997).

    CAS  PubMed  Google Scholar 

  65. Rubinstein, M. et al. Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 90, 991–1001 (1997).

    CAS  PubMed  Google Scholar 

  66. Tan, T. et al. Stress exposure in dopamine D4 receptor knockout mice induces schizophrenia-like behaviors via disruption of GABAergic transmission. Schizophr. Bull. 45, 1012–1023 (2019).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank X. Chen and A. Frazier for excellent technical support. This work was supported by the Nancy Lurie Marks Family Foundation and the National Institutes of Health (MH112237) to Z.Y.

Author information

Authors and Affiliations

Authors

Contributions

B.R. performed the behavioral experiments and wrote the paper. K.M. performed the behavioral experiments. Z.Y. supervised the project and wrote the paper.

Corresponding author

Correspondence to Zhen Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks T. Takumi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related Links

Key references using this protocol

Qin, L. et al. Nat. Neurosci. 21, 564–75 (2018): https://doi.org/10.1038/s41593-018-0110-8

Rein, B. et al Mol. Psychiatry (2020): https://doi.org/10.1038/s41380-020-0693-9

Duffney, L. J. et al. Cell Rep. 11, 1400–1413 (2015): https://doi.org/10.1016/j.celrep.2015.04.064

Supplementary information

Supplementary Information

Supplementary Table 1.

Reporting Summary

Supplementary Video 1

Representative video of a wild type (WT) mouse in the social preference test phase of the three-phase S–NS method, with commentary.

Supplementary Video 2

Representative video of a Shank3-deficient mouse in the social preference test phase of the three-phase S–NS method, with commentary.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rein, B., Ma, K. & Yan, Z. A standardized social preference protocol for measuring social deficits in mouse models of autism. Nat Protoc 15, 3464–3477 (2020). https://doi.org/10.1038/s41596-020-0382-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0382-9

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing