Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta

Abstract

The human placenta is essential for successful reproduction. There is great variation in the anatomy and development of the placenta in different species, meaning that animal models provide limited information about human placental development and function. Until recently, it has been impossible to isolate trophoblast cells from the human placenta that proliferate in vitro. This has limited our ability to understand pregnancy disorders. Generating an in vitro model that recapitulates the unique features of the human placenta has been challenging. The first in vitro model system of human trophoblast that could be cultured long term and differentiated to syncytiotrophoblast (SCT) and extravillous trophoblast (EVT) was a two-dimensional (2D) culture system of human trophoblast stem cells. Here, we describe a protocol to isolate trophoblast from first-trimester human placentas that can be grown long term in a three-dimensional (3D) organoid culture system. Trophoblast organoids can be established within 2−3 weeks, passaged every 7–10 d, and cultured for over a year. The structural organization of these human trophoblast organoids closely resembles the villous placenta with a layer of cytotrophoblast (VCT) that differentiates into superimposed SCT. Altering the composition of the medium leads to differentiation of the trophoblast organoids into HLA-G+ EVT cells which rapidly migrate and invade through the Matrigel droplet in which they are cultured. Our previous research confirmed that there is similarity between the trophoblast organoids and in vivo placentas in their transcriptomes and ability to produce placental hormones. This organoid culture system provides an experimental model to investigate human placental development and function as well as interactions of trophoblast cells with the local and systemic maternal environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of derivation, validation and quality control of trophoblast organoids.
Fig. 2: Derivation of trophoblast organoids.
Fig. 3: Troubleshooting: identifying glandular contamination and timing of passaging trophoblast organoid cultures.
Fig. 4: EVT differentiation and characterization.
Fig. 5: Controls and gating strategy for flow cytometric analysis.
Fig. 6: Clonal isolation, propagation and differentiation of trophoblast organoids.

Similar content being viewed by others

References

  1. Smith, G. C. S. First-trimester determination of complications of late pregnancy. JAMA 303, 561–562 (2010).

    CAS  PubMed  Google Scholar 

  2. Hamilton, W. J. & Boyd, J. D. Development of the human placenta in the first three months of gestation. J. Anat. 94, 297–328 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, C. Q. E. et al. What is trophoblast? A combination of criteria define human first-trimester trophoblast. Stem Cell Rep. 6, 257–272 (2016).

    CAS  Google Scholar 

  4. Turco, M. Y. & Moffett, A. Development of the human placenta. Development 146, dev163428 (2019).

    CAS  PubMed  Google Scholar 

  5. Horii, M., Touma, O., Bui, T. & Parast, M. Modeling human trophoblast, the placental epithelium at the maternal fetal interface. Reproduction 160, R1–R11 (2020).

    CAS  PubMed  Google Scholar 

  6. Tanaka, S., Kunath, T., Hadjantonakis, A.-K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072 LP–2072075 (1998).

    Google Scholar 

  7. Okae, H. et al. Derivation of human trophoblast stem cells. Cell Stem Cell 22, 50–63.e6 (2018).

    CAS  PubMed  Google Scholar 

  8. Turco, M. Y. et al. Trophoblast organoids as a model for maternal–fetal interactions during human placentation. Nature 564, 263–267 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    CAS  PubMed  Google Scholar 

  10. Kunath, T. et al. Developmental differences in the expression of FGF receptors between human and mouse embryos. Placenta 35, 1079–1088 (2014).

    CAS  PubMed  Google Scholar 

  11. Paiva, P. et al. Human chorionic gonadotrophin regulates FGF2 and other cytokines produced by human endometrial epithelial cells, providing a mechanism for enhancing endometrial receptivity. Hum. Reprod. 26, 1153–1162 (2011).

    CAS  PubMed  Google Scholar 

  12. Hempstock, J., Cindrova-Davies, T., Jauniaux, E. & Burton, G. J. Endometrial glands as a source of nutrients, growth factors and cytokines during the first trimester of human pregnancy: a morphological and immunohistochemical study. Reprod. Biol. Endocrinol. 2, 58 (2004).

    PubMed  PubMed Central  Google Scholar 

  13. Mühlhauser, J. et al. Differentiation and proliferation patterns in human trophoblast revealed by c-erbB-2 oncogene product and EGF-R. J. Histochem. Cytochem. 41, 165–173 (1993).

    PubMed  Google Scholar 

  14. Sonderegger, S., Husslein, H., Leisser, C. & Knöfler, M. Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta 28, S97–S102 (2007).

    PubMed  PubMed Central  Google Scholar 

  15. Haider, S., Kunihs, V., Fiala, C., Pollheimer, J. & Knöfler, M. Expression pattern and phosphorylation status of Smad2/3 in different subtypes of human first trimester trophoblast. Placenta 57, 17–25 (2017).

    CAS  PubMed  Google Scholar 

  16. Somerset, D. A. et al. Ontogeny of hepatocyte growth factor (HGF) and its receptor (c-met) in human placenta: reduced HGF expression in intrauterine growth restriction. Am. J. Pathol. 153, 1139–1147 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kauma, S., Hayes, N. & Weatherford, S. The differential expression of hepatocyte growth factor and met in human placenta. J. Clin. Endocrinol. Metab. 82, 949–954 (1997).

    CAS  PubMed  Google Scholar 

  18. Herr, F., Schreiner, I., Baal, N., Pfarrer, C. & Zygmunt, M. Expression patterns of Notch receptors and their ligands Jagged and Delta in human placenta. Placenta 32, 554–563 (2011).

    CAS  PubMed  Google Scholar 

  19. Haider, S. et al. Notch1 controls development of the extravillous trophoblast lineage in the human placenta. Proc. Natl Acad. Sci. USA 113, E7710–E7719 (2016).

    CAS  PubMed  Google Scholar 

  20. Wu, W.-X., Brooks, J., Glasier, A. F. & McNeilly, A. S. The relationship between decidualization and prolactin mRNA and production at different stages of human pregnancy. J. Mol. Endocrinol. 14, 255–261 (1995).

    CAS  PubMed  Google Scholar 

  21. Stefanoska, I., Jovanović Krivokuća, M., Vasilijić, S., Ćujić, D. & Vićovac, L. Prolactin stimulates cell migration and invasion by human trophoblast in vitro. Placenta 34, 775–783 (2013).

    CAS  PubMed  Google Scholar 

  22. Tuckey, R. C. Progesterone synthesis by the human placenta. Placenta 26, 273–281 (2005).

    CAS  PubMed  Google Scholar 

  23. Wang, J. et al. Progesterone receptor immunoreactivity at the maternofetal interface of first trimester pregnancy: a study of the trophoblast population. Hum. Reprod. 11, 413–419 (1996).

    CAS  PubMed  Google Scholar 

  24. Goldman, S. & Shalev, E. Difference in progesterone-receptor isoforms ratio between early and late first-trimester human trophoblast is associated with differential cell invasion and matrix metalloproteinase 2 expression. Biol. Reprod. 74, 13–22 (2006).

    CAS  PubMed  Google Scholar 

  25. Meadows, J. W., Pitzer, B., Brockman, D. E. & Myatt, L. Differential localization of prostaglandin E synthase isoforms in human placental cell types. Placenta 25, 259–265 (2004).

    CAS  PubMed  Google Scholar 

  26. Grigsby, P. L., Sooranna, S. R., Brockman, D. E., Johnson, M. R. & Myatt, L. Localization and expression of prostaglandin E2 receptors in human placenta and corresponding fetal membranes with labor. Am. J. Obstet. Gynecol. 195, 260–269 (2006).

    CAS  PubMed  Google Scholar 

  27. Tilburgs, T. et al. Human HLA-G+ extravillous trophoblasts: Immune-activating cells that interact with decidual leukocytes. Proc. Natl Acad. Sci. USA. 112, 7219–7224 (2015).

    CAS  PubMed  Google Scholar 

  28. Martinović, S. et al. Osteogenic protein-1 is produced by human fetal trophoblasts in vivo and regulates the synthesis of chorionic gonadotropin and progesterone by trophoblasts in vitro. Clin. Chem. Lab. Med. 34, 103 (1996).

    Google Scholar 

  29. Fournier, T., Guibourdenche, J. & Evain-Brion, D. Review: hCGs: different sources of production, different glycoforms and functions. Placenta 36, S60–S65 (2015).

    CAS  PubMed  Google Scholar 

  30. Tao, Y.-X., Lei, Z. M., Hofmann, G. E. & Rao, C. V. Human intermediate trophoblasts express chorionic gonadotropin/luteinizing hormone receptor gene. Biol. Reprod. 53, 899–904 (1995).

    CAS  PubMed  Google Scholar 

  31. Soliman, A. et al. Placental melatonin system is present throughout pregnancy and regulates villous trophoblast differentiation. J. Pineal Res. 59, 38–46 (2015).

    CAS  PubMed  Google Scholar 

  32. Iwasaki, S. et al. Melatonin as a local regulator of human placental function. J. Pineal Res. 39, 261–265 (2005).

    CAS  PubMed  Google Scholar 

  33. Butler, T. M., Pater, J. A. & MacPhee, D. J. Integrin linked kinase regulates syncytialization of BeWo trophoblast cells. Biol. Reprod. 96, 673–685 (2017).

    PubMed  Google Scholar 

  34. Shiokawa, S. et al. Small guanosine triphospatase rhoa and rho-associated kinase as regulators of trophoblast migration. J. Clin. Endocrinol. Metab. 87, 5808–5816 (2002).

    CAS  PubMed  Google Scholar 

  35. Burton, G. J., Yung, H. W. & Murray, A. J. Mitochondrial–endoplasmic reticulum interactions in the trophoblast: stress and senescence. Placenta 52, 146–155 (2017).

    CAS  PubMed  Google Scholar 

  36. Li, L., Rubin, L. P. & Gong, X. MEF2 transcription factors in human placenta and involvement in cytotrophoblast invasion and differentiation. Physiol. Genomics 50, 10–19 (2018).

    CAS  PubMed  Google Scholar 

  37. Turco, M. Y. et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat. Cell Biol. 19, 568–577 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fock, V. et al. Neuregulin-1-mediated ErbB2–ErbB3 signalling protects human trophoblasts against apoptosis to preserve differentiation. J. Cell Sci. 128, 4306 LP–4316 (2015).

    Google Scholar 

  39. Haider, S. et al. Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta. Stem Cell Rep. 11, 537–551 (2018).

    CAS  Google Scholar 

  40. Margolis, L. & Sadovsky, Y. The biology of extracellular vesicles: the known unknowns. PLoS Biol. 17, e3000363–e3000363 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Moffett, A. & Colucci, F. Co-evolution of NK receptors and HLA ligands in humans is driven by reproduction. Immunol. Rev. 267, 283–297 (2015).

    CAS  PubMed  Google Scholar 

  42. Burton, G. J., Jauniaux, E. & Charnock-Jones, D. S. The influence of the intrauterine environment on human placental development. Int. J. Dev. Biol. 54, 303–312 (2010).

    CAS  PubMed  Google Scholar 

  43. Hiby, S. E. et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J. Exp. Med. 200, 957–965 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mayhew, T. M. Turnover of human villous trophoblast in normal pregnancy: what do we know and what do we need to know? Placenta 35, 229–240 (2014).

    CAS  PubMed  Google Scholar 

  45. Arnholdt, H., Meisel, F., Fandrey, K. & Löhrs, U. Proliferation of villous trophoblast of the human placenta in normal and abnormal pregnancies. Virchows Arch. B 60, 365–372 (1991).

    CAS  PubMed  Google Scholar 

  46. Mansour, A. A. et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36, 432–441 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pham, M. T. et al. Generation of human vascularized brain organoids. Neuroreport 29, 588–593 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Wimmer, R. A. et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565, 505–510 (2019).

    CAS  PubMed  Google Scholar 

  49. Bar-Ephraim, Y. E., Kretzschmar, K. & Clevers, H. Organoids in immunological research. Nat. Rev. Immunol. 20, 279–293 (2020).

    CAS  PubMed  Google Scholar 

  50. Co, J. Y. et al. Controlling epithelial polarity: a human enteroid model for host-pathogen interactions. Cell Rep. 26, 2509–2520.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Abbas, Y. et al. Generation of a three-dimensional collagen scaffold-based model of the human endometrium. Interface Focus 10, 20190079 (2020).

    PubMed  PubMed Central  Google Scholar 

  52. Cruz-Acuña, R. et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat. Cell Biol. 19, 1326–1335 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. Apps, R. et al. Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies. Immunology 127, 26–39 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to patients for donating tissue for research. We thank D. Moore and staff at Addenbrookes Hospital, Cambridge. This work was initiated and funded by the Centre for Trophoblast Research, University of Cambridge. G. J. Burton was funded by the Medical Research Council (MR/L020041/1). A. Moffett holds a Wellcome Trust joint investigator award with Dr F. Colucci (200841/Z/16/Z). M.Y. Turco received funding from the E.U. 7th Framework Programme for research, technological development and demonstration (PIEF-GA-2013-629785) and from the European Union’s Horizon 2020 research and innovation programme (Grant agreement no. [853546]). M.Y. Turco holds a Royal Society Dorothy Hodgkin Fellowship (DH160216) and a Royal Society Research Grant (RGF\R1\180028). We thank all members of the Moffett Laboratory for support.

Author information

Authors and Affiliations

Authors

Contributions

M.Y.T. and L.G. developed the organoid culture system for trophoblast in ref. 8. All the experiments undertaken while developing this protocol were carried out by M.A.S., R.C.F., L.G., and M.S.H. The manuscript was written by M.Y.T., M.A.S., L.G. and A.M. with help from R.C.F. and G.J.B. The figures were prepared by M.A.S., R.C.F., and M.S.H. All authors commented on the manuscript.

Corresponding author

Correspondence to Margherita Y. Turco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related Links

Key reference using this protocol

Turco, M. Y. et al. Nature 564, 263–267 (2018): https://doi.org/10.1038/s41586-018-0753-3

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheridan, M.A., Fernando, R.C., Gardner, L. et al. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta. Nat Protoc 15, 3441–3463 (2020). https://doi.org/10.1038/s41596-020-0381-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0381-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing