Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Establishment of patient-derived cancer organoids for drug-screening applications

An Author Correction to this article was published on 12 January 2021

This article has been updated


Adult stem cell–based organoid technology is a versatile tool for the generation and long-term maintenance of near-native 3D epithelial tissues in vitro. The generation of cancer organoids from primary patient material enables a range of therapeutic agents to be tested in the resulting organoid cultures. Patient-derived cancer organoids therefore hold great promise for personalized medicine. Here, we provide an overview of the protocols used by different groups to establish organoids from various epithelial tissues and cancers, plus the different protocols subsequently used to test the in vitro therapy sensitivity of these patient-derived organoids. We also provide an in-depth protocol for the generation of head and neck squamous cell carcinoma organoids and their subsequent use in semi-automated therapy screens. Establishment of organoids and subsequent screening can be performed within 3 months, although this timeline is highly dependent on a.o. starting material and the number of therapies tested. The protocol provided may serve as a reference to successfully establish organoids from other cancer types and perform drug screenings thereof.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Isolation of oral mucosa organoids form primary tissue.
Fig. 2: Establishment of oral mucosa organoids from primary tissue.
Fig. 3: Drug screening using organoids.

Data availability

All data generated or analyzed during this study are included in this published article.

Change history

  • 12 January 2021

    A Correction to this paper has been published:


  1. 1.

    Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).

    CAS  Google Scholar 

  2. 2.

    Kretzschmar, K. & Clevers, H. Organoids: modeling development and the stem cell niche in a dish. Dev. Cell 38, 590–600 (2016).

    CAS  Google Scholar 

  3. 3.

    Dye, B. R. et al. In vitro generation of human pluripotent stem cell derived lung organoids. Elife 2015, 1–25 (2015).

    Google Scholar 

  4. 4.

    Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    CAS  Google Scholar 

  5. 5.

    Mullenders, J. et al. Mouse and human urothelial cancer organoids: a tool for bladder cancer research. Proc. Natl Acad. Sci. USA 116, 4567–4574 (2019).

    CAS  Google Scholar 

  6. 6.

    Karthaus, W. R. et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159, 163–175 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Huch, M. et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32, 2708–2721 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Lee, S. H. et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173, 515–528 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386 (2018).

    CAS  Google Scholar 

  10. 10.

    Crespo, M. et al. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat. Med. 23, 878–884 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Tiriac, H. et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8, 1112–1129 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Roerink, S. F. et al. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 556, 457–462 (2018).

    CAS  Google Scholar 

  13. 13.

    Snover, D. C. Update on the serrated pathway to colorectal carcinoma. Hum. Pathol. 42, 1–10 (2011).

    Google Scholar 

  14. 14.

    Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    CAS  Google Scholar 

  15. 15.

    Longmire, T. A. et al. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 10, 398–411 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Bartfeld, S. et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148, 126–136.e6 (2015).

    Google Scholar 

  17. 17.

    Ren, W. et al. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc. Natl Acad. Sci. USA 111, 16401–16406 (2014).

    CAS  Google Scholar 

  18. 18.

    Hill, S. J. et al. Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids. Cancer Discov. 8, 1404–1421 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Driehuis, E. et al. Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Discov. 9, 852–871 (2019).

    CAS  Google Scholar 

  20. 20.

    Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Seino, T. et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell 22, 454–467.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    McCracken, K. W. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400–404 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Takasato, M. et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol. 16, 118–126 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Takebe, T. et al. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat. Protoc. 9, 396–409 (2014).

    CAS  Google Scholar 

  27. 27.

    Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    CAS  Google Scholar 

  28. 28.

    Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Schutgens, F. et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat. Biotechnol. 37, 303–313 (2019).

    CAS  Google Scholar 

  30. 30.

    Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Yao, Y. et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26, 17–26.e6 (2020).

    CAS  Google Scholar 

  32. 32.

    Ooft, S. N. et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl. Med. 11, eaay2574 (2019).

    CAS  Google Scholar 

  33. 33.

    Berkers, G. et al. Rectal organoids enable personalized treatment of cystic fibrosis. Cell Rep. 26, 1701–1708 (2019).

    CAS  Google Scholar 

  34. 34.

    Haibe-Kains, B. et al. Inconsistency in large pharmacogenomic studies. Nature 504, 389–393 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Niepel, M. et al. A multi-center study on the reproducibility of drug-response assays in mammalian cell lines. Cell Syst. 9, 35–48.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Hafner, M., Niepel, M., Chung, M. & Sorger, P. K. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat. Methods 13, 521–527 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Haverty, P. M. et al. Reproducible pharmacogenomic profiling of cancer cell line panels. Nature 533, 333–337 (2016).

    CAS  Google Scholar 

  38. 38.

    Nanki, K. et al. Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell 174, 856–869.e17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Van De Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Pauli, C. et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7, 462–477 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Fujii, M. et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18, 827–838 (2016).

    CAS  Google Scholar 

  42. 42.

    Schutte, M. et al. Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nat. Commun. 8, 14262 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Li, X. et al. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat. Commun. 9, 2983 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Kessler, M. et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat. Commun. 6, 8989 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Boretto, M. et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development 144, 1775–1786 (2017).

    CAS  Google Scholar 

  46. 46.

    Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Broutier, L. et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 23, 1424–1435 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Sachs, N. et al. Long‐term expanding human airway organoids for disease modeling. EMBO J. 38, e100300 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kim, M. et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 10, 3991 (2019).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Kopper, O. et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med. 25, 838–849 (2019).

    CAS  Google Scholar 

  51. 51.

    Pringle, S. et al. Human salivary gland stem cells functionally restore radiation damaged salivary glands. Stem Cells 34, 640–652 (2016).

    CAS  Google Scholar 

  52. 52.

    Yan, H. H. N. et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23, 882–897 (2018).

    CAS  Google Scholar 

  53. 53.

    Seidlitz, T. et al. Human gastric cancer modelling using organoids. Gut 68, 207–217 (2019).

    CAS  Google Scholar 

  54. 54.

    Tamura, H. et al. Evaluation of anticancer agents using patient-derived tumor organoids characteristically similar to source tissues. Oncol. Rep. 40, 635–646 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Grassi, L. et al. Organoids as a new model for improving regenerative medicine and cancer personalized therapy in renal diseases. Cell Death Dis. 10, 201 (2019).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Li, L. et al. Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity. JCI Insight 4, e121490 (2019).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Saito, Y. et al. Establishment of patient-derived organoids and drug screening for biliary tract carcinoma. Cell Rep. 27, 1265–1276.e4 (2019).

    CAS  Google Scholar 

  58. 58.

    Driehuis, E. et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc. Natl Acad. Sci. USA 116, 26580–26590 (2019).

    CAS  Google Scholar 

  59. 59.

    Geurts, M. H. et al. CRISPR-based adenine editors correct nonsense mutations in a cystic fibrosis organoid biobank. Cell Stem Cell S1934-5909, 30019–30019 (2020).

    Google Scholar 

  60. 60.

    Lee, G. Y., Kenny, P. A., Lee, E. H. & Bissell, M. J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4, 359–365 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Ootani, A. et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med. 15, 701–706 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    de Lau, W. et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476, 293–297 (2011).

    Google Scholar 

  63. 63.

    Rheinwald, J. G. & Green, H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature 265, 421–424 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517, 576–582 (2015).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Haramis, A.-P. G. et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303, 1684–1686 (2004).

    CAS  Google Scholar 

  66. 66.

    Ganesh, K. et al. A rectal cancer model establishes a platform to study individual responses to chemoradiation. Nat. Med. 25, 1607–1614 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Boretto, M. et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat. Cell Biol. 21, 1041–1051 (2019).

    CAS  Google Scholar 

  68. 68.

    Lavitrano, M. et al. BTK inhibitors synergize with 5-FU to treat drug-resistant TP53-null colon cancers. J. Pathol. 250, 134–147 (2019).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Boehnke, K. et al. Assay establishment and validation of a high-throughput screening platform for three-dimensional patient-derived colon cancer organoid cultures. J. Biomol. Screen. 21, 931–941 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Lampis, A. et al. MIR21 drives resistance to heat shock protein 90 inhibition in cholangiocarcinoma. Gastroenterology 154, 1066–1079.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Verissimo, C. S. et al. Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening. Elife 5, e18489 (2016).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Post, J. B. et al. Cancer modeling in colorectal organoids reveals intrinsic differences between oncogenic RAS and BRAF variants. Preprint at (2019).

  73. 73.

    Takahashi, N. et al. An in vitro system for evaluating molecular targeted drugs using lung patient-derived tumor organoids. Cells 8, 481 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Jabs, J. et al. Screening drug effects in patient-derived cancer cells links organoid responses to genome alterations. Mol. Syst. Biol. 13, 955 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174, 1586–1598 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Bar-Ephraim, Y. E., Kretzschmar, K. & Clevers, H. Organoids in immunological research. Nat. Rev. Immunol. 20, 279–293 (2020).

    CAS  Google Scholar 

  77. 77.

    Gao, M. et al. Development of patient-derived gastric cancer organoids from endoscopic biopsies and surgical tissues. Ann. Surg. Oncol. 25, 2767–2775 (2018).

    Google Scholar 

  78. 78.

    Giobbe, G. G. et al. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat. Commun. 10, 5658 (2019).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    CAS  Google Scholar 

  80. 80.

    Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    CAS  Google Scholar 

  81. 81.

    Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).

    CAS  Google Scholar 

  82. 82.

    Michels, B. E. et al. Human colon organoids reveal distinct physiologic and oncogenic Wnt responses. J. Exp. Med. 216, 704–720 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Fujii, M. et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell 23, 787–793.e6 (2018).

    CAS  Google Scholar 

  84. 84.

    Weeber, F. et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc. Natl Acad. Sci. USA 112, 13308–13311 (2015).

    CAS  Google Scholar 

  85. 85.

    Driehuis, E. et al. Patient-derived head and neck cancer organoids recapitulate EGFR expression levels of respective tissues and are responsive to EGFR-targeted photodynamic therapy. J. Clin. Med. 8, E1880 (2019).

    Google Scholar 

  86. 86.

    Sebaugh, J. L. Guidelines for accurate EC50/IC50 estimation. Pharm. Stat. 10, 128–134 (2011).

    CAS  Google Scholar 

  87. 87.

    Bolhaqueiro, A. C. F. et al. Ongoing chromosomal instability and karyotype evolution in human colorectal cancer organoids. Nat. Genet. 51, 824–834 (2019).

    CAS  Google Scholar 

  88. 88.

    Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).

    CAS  Google Scholar 

Download references


We thank S. Kolders and S. Spelier for their help in optimizing the drug-screening protocol. We thank S. Boi and T. Dalton for critically reading the manuscript. We thank M. Putker for her valuable contributions to Tables 1–3. We thank P. van der Groep, A. Brousali, A. Snelting and O. Kranenburg of the Utrecht Platform for Organoid Technology (U-PORT; UMC Utrecht) for patient inclusion and tissue acquisition. We thank C. Ammerlaan, J. Bernink, G. Busslinger, T. Dalton, I. Franken and K. Lõhmussaar for providing images of organoid cultures. This work was supported by the gravitation program from the Netherlands Organisation for Scientific Research (NWO), the Oncode Institute (partly financed by the Dutch Cancer Society), the European Research Council under ERC Advanced Grant Agreement no. 67013 (H.C.), the Koerber Foundation (H.C.), ZonMw grant 116.006.10 (H.C.) and the German Cancer Aid (K.K.). K.K. was the recipient of a VENI grant from the Netherlands Organisation for Scientific Research (NWO-ZonMW, 016.166.140) and was a long-term fellow of the Human Frontier Science Program Organization (HFSPO, LT771/2015).

Author information




E.D. developed the protocols. E.D. performed the experiments. K.K. assisted with the experiments. E.D. and K.K. wrote the manuscript. H.C. edited the manuscript. K.K. and H.C. supervised the study and acquired funding.

Corresponding authors

Correspondence to Kai Kretzschmar or Hans Clevers.

Ethics declarations

Competing interests

H.C., E.D. and K.K. are named inventors on multiple patents or patents pending related to organoids.

Additional information

Peer review information Nature Protocols thanks Takanori Takebe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Driehuis, E. et al. Cancer Discov. 9, 852–871 (2019):

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Supplementary Table 1

Culture media used to establish patient-derived organoids, per protocol applied by different research groups.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Driehuis, E., Kretzschmar, K. & Clevers, H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc 15, 3380–3409 (2020).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing