Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient low-cost chromatin profiling with CUT&Tag


We recently introduced Cleavage Under Targets & Tagmentation (CUT&Tag), an epigenomic profiling strategy in which antibodies are bound to chromatin proteins in situ in permeabilized nuclei. These antibodies are then used to tether the cut-and-paste transposase Tn5. Activation of the transposase simultaneously cleaves DNA and adds adapters (‘tagmentation’) for paired-end DNA sequencing. Here, we introduce a streamlined CUT&Tag protocol that suppresses DNA accessibility artefacts to ensure high-fidelity mapping of the antibody-targeted protein and improves the signal-to-noise ratio over current chromatin profiling methods. Streamlined CUT&Tag can be performed in a single PCR tube, from cells to amplified libraries, providing low-cost genome-wide chromatin maps. By simplifying library preparation CUT&Tag requires less than a day at the bench, from live cells to sequencing-ready barcoded libraries. As a result of low background levels, barcoded and pooled CUT&Tag libraries can be sequenced for as little as $25 per sample. This enables routine genome-wide profiling of chromatin proteins and modifications and requires no special skills or equipment.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Steps in antibody-targeted chromatin profiling strategies.
Fig. 2: CUT&Tag provides high signal-to-noise ratios and reproducibility for native and lightly cross-linked cells and nuclei.
Fig. 3: Comparison of scCUT&Tag to single-cell ChIP-seq.
Fig. 4: Similar results are obtained using DNA extraction and single-tube CUT&Tag options.
Fig. 5: Suppression of accessible DNA tagmentation.
Fig. 6: CoBATCH and ACT-seq peaks correspond to ATAC-seq peak summits genome-wide.

Data availability

Publicly available datasets analyzed in this work are available in Supplementary Note 1. All sequencing data generated in this study have been deposited in GEO under accession GSE145187.


  1. Rodriguez-Ubreva, J. & Ballestar, E. Chromatin immunoprecipitation. Methods Mol. Biol. 1094, 309–318 (2014).

    CAS  PubMed  Google Scholar 

  2. Solomon, M. J. & Varshavsky, A. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc. Natl Acad. Sci. USA 82, 6470–6474 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rossi, M. J., Lai, W. K. M. & Pugh, B. F. Simplified ChIP-exo assays. Nat. Commun. 9, 2842 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. He, Q., Johnston, J. & Zeitlinger, J. ChIP-nexus enables improved detection of in vivo transcription factor binding footprints. Nat. Biotechnol. 33, 395–401 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Skene, P. J. & Henikoff, S. A simple method for generating high-resolution maps of genome wide protein binding. eLife 4, e09225 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. Kasinathan, S., Orsi, G. A., Zentner, G. E., Ahmad, K. & Henikoff, S. High-resolution mapping of transcription factor binding sites on native chromatin. Nat. Methods 11, 203–209 (2014).

    CAS  PubMed  Google Scholar 

  7. Ai, S. et al. Profiling chromatin states using single-cell itChIP-seq. Nat. Cell Biol. 21, 1164–1172 (2019).

    CAS  PubMed  Google Scholar 

  8. Grosselin, K. et al. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Nat. Genet. 51, 1060–1066 (2019).

    CAS  PubMed  Google Scholar 

  9. Schmidl, C., Rendeiro, A. F., Sheffield, N. C. & Bock, C. ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. Nat. Methods 12, 963–965 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. van Steensel, B. & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase. Nat. Biotechnol. 18, 424–428 (2000).

    PubMed  Google Scholar 

  11. Schmid, M., Durussel, T. & Laemmli, U. K. ChIC and ChEC; genomic mapping of chromatin proteins. Mol. Cell 16, 147–157 (2004).

    CAS  PubMed  Google Scholar 

  12. Zentner, G. E., Kasinathan, S., Xin, B., Rohs, R. & Henikoff, S. ChEC-seq kinetics discriminate transcription factor binding sites by DNA sequence and shape in vivo. Nat. Commun. 6, 8733 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife 6, e21856 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Janssens, D. H. et al. Automated in situ chromatin profiling efficiently resolves cell types and gene regulatory programs. Epigenetics Chromatin 11, 74 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).

    CAS  PubMed  Google Scholar 

  16. Liu, N. et al. Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell 173, 430–442 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hainer, S. J., Boškovic, A., McCannell, K. N., Rando, O. J. & Fazzio, T. G. Profiling of pluripotency factors in individual stem cells and early embryos. Cell 177, 1319–1329 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Oomen, M. E., Hansen, A. S., Liu, Y., Darzacq, X. & Dekker, J. CTCF sites display cell cycle-dependent dynamics in factor binding and nucleosome positioning. Genome Res. 29, 236–249 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu, Q., Liu, N., Orkin, S. H. & Yuan, G. C. CUT&RUNTools: a flexible pipeline for CUT&RUN processing and footprint analysis. Genome Biol. 20, 192 (2019).

    PubMed  PubMed Central  Google Scholar 

  21. Meers, M. P., Tenenbaum, D. & Henikoff, S. Peak calling by sparse enrichment analysis for CUT&RUN chromatin profiling. Epigenetics Chromatin 12, 42 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. Meers, M.P., Janssens, D.H. & Henikoff, S. Pioneer factor-nucleosome binding events during differentiation are motif encoded. Mol Cell. 75, 562-575 (2019).

  23. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Harada, A. et al. A chromatin integration labelling method enables epigenomic profiling with lower input. Nat. Cell Biol. 21, 287–296 (2019).

    CAS  PubMed  Google Scholar 

  25. Carter, B. et al. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Nat. Commun. 10, 3747 (2019).

    PubMed  PubMed Central  Google Scholar 

  26. Wang, Q. et al. CoBATCH for high-throughput single-cell epigenomic profiling. Mol. Cell 76, 206–216 e7 (2019).

    CAS  PubMed  Google Scholar 

  27. Meers, M. P., Bryson, T. D., Henikoff, J. G. & Henikoff, S. Improved CUT&RUN chromatin profiling tools. Elife 8, e46314 (2019).

    PubMed  PubMed Central  Google Scholar 

  28. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Picelli, S. et al. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 24, 2033–2040 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, T. Use model-based Analysis of ChIP-Seq (MACS) to analyze short reads generated by sequencing protein-DNA interactions in embryonic stem cells. Methods Mol. Biol. 1150, 81–95 (2014).

    CAS  PubMed  Google Scholar 

  35. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jung, Y. L. et al. Impact of sequencing depth in ChIP-seq experiments. Nucleic Acids Res. 42, e74 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Oh, K. S., Ha, J., Baek, S. & Sung, M. H. XL-DNase-seq: improved footprinting of dynamic transcription factors. Epigenetics Chromatin 12, 30 (2019).

    PubMed  PubMed Central  Google Scholar 

  38. Ernst, C., Eling, N., Martinez-Jimenez, C. P., Marioni, J. C. & Odom, D. T. Staged developmental mapping and X chromosome transcriptional dynamics during mouse spermatogenesis. Nat. Commun. 10, 1251 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. Org, T. et al. Genome-wide histone modification profiling of inner cell mass and trophectoderm of bovine blastocysts by RAT-ChIP. PLoS ONE 14, e0225801 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mo, A. et al. Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86, 1369–1384 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank Christine Codomo for pooling Illumina sequencing libraries and members of our laboratory and colleagues at the Fred Hutch for providing input. We are especially grateful to the many subscribers around the world who have tried CUT&Tag and provided helpful comments and feedback that have enriched this protocol. This work was supported by the Howard Hughes Medical Institute (H.S.K.-O. and S.H.), grants R01 HG010492 (S.H.) and R01 GM108699 (K.A.) from the National Institutes of Health and an HCA Seed Network grant from the Chan-Zuckerberg Initiative (S.H.).

Author information

Authors and Affiliations



H.S.K.-O. and S.H. developed the protocol with input from K.A and D.H.J. S.H. performed the experiments, and with J.G.H. analyzed the data. S.H. and K.A. wrote the manuscript with input from H.S.K.-O, D.H.J., and J.G.H.

Corresponding author

Correspondence to Steven Henikoff.

Ethics declarations

Competing interests

H.S.K.-O. and S.H. have filed patent applications related to this work.

Additional information

Peer review information Nature Protocols thanks Sabrina Krueger, Julia Zeitlinger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Kaya-Okur, H. S. et al. Nat. Commun. 10, 1930 (2019):

Supplementary information

Supplementary Information

Supplementary Note 1 and Supplementary Fig. 1.

Reporting Summary.

Supplementary Table 1

Primer Sequences.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaya-Okur, H.S., Janssens, D.H., Henikoff, J.G. et al. Efficient low-cost chromatin profiling with CUT&Tag. Nat Protoc 15, 3264–3283 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing