Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Creating CRISPR-responsive smart materials for diagnostics and programmable cargo release

Abstract

Materials that sense and respond to biological signals in their environment have a broad range of potential applications in drug delivery, medical devices and diagnostics. Nucleic acids are important biological cues that encode information about organismal identity and clinically relevant phenotypes such as drug resistance. We recently developed a strategy to design nucleic acid–responsive materials using the CRISPR-associated nuclease Cas12a as a user-programmable sensor and material actuator. This approach improves on the sensitivity of current DNA-responsive materials while enabling their rapid repurposing toward new sequence targets. Here, we provide a comprehensive resource for the design, synthesis and actuation of CRISPR-responsive hydrogels. First, we provide guidelines for the synthesis of Cas12a guide RNAs (gRNAs) for in vitro applications. We then outline methods for the synthesis of both polyethylene glycol-DNA (PEG-DNA) and polyacrylamide-DNA (PA-DNA) hydrogels, as well as their controlled degradation using Cas12a for the release of cargos, including small molecules, enzymes, nanoparticles and living cells within hours. Finally, we detail the design and assembly of microfluidic paper-based devices that use Cas12a-sensitive hydrogels to convert DNA inputs into a variety of visual and electronic readouts for use in diagnostics. Following the initial validation of the gRNA and Cas12a components (1 d), the synthesis and testing of either PEG-DNA or PA-DNA hydrogels require 3–4 d of laboratory time. Optional extensions, including the release of primary human cells or the design of the paper-based diagnostic, require an additional 2–3 d each.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Activation of Cas12a collateral ssDNA cleavage activity by trigger dsDNA.
Fig. 2: Design and synthesis of guide RNA molecules (Steps 1–14).
Fig. 3: Synthesis of PEG hydrogels harboring ssDNA-tethered molecules (Step 19A).
Fig. 4: Monitoring the Cas12a-mediated release of fluorophores from PEG hydrogels (Step 19A).
Fig. 5: Synthesis of polyacrylamide hydrogels crosslinked by DNA molecules (Step 19B).
Fig. 6: Monitoring the Cas12a-mediated release of nanoparticles through bulk PA-DNA gel degradation (Step 19C).
Fig. 7: Workflow for the crosslinking and Cas12a-mediated actuation of PA-DNA hydrogels containing encapsulated cells (Step 19D).
Fig. 8: Basal ssDNA cleavage activity of cell culture media.
Fig. 9: Multi-modal detection of DNA and RNA targets using CRISPR-sensitive hydrogels in paper-based fluidic devices.
Fig. 10: Design and assembly of the microfluidic paper-based analytical device (Step 19E(ii–xii)).
Fig. 11: Modification of the paper-fluidic device for analog signal recording.
Fig. 12: Modification of the paper-fluidic device for remote transmission of digital signals.
Fig. 13: Time-dependent drying of PA-DNA hydrogels.
Fig. 14: Anticipated Cas12a activation by dsDNA triggers and subsequent material actuation.

Data availability

The data generated or analyzed during this study are included in this article and our previous publication15. The original data files can be obtained from the corresponding author upon reasonable request.

References

  1. Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater 2, 16075 (2017).

    Article  CAS  Google Scholar 

  2. Li, J. Y. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater 1, 16071 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kanamala, M., Wilson, W. R., Yang, M. M., Palmer, B. D. & Wu, Z. M. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials 85, 152–167 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Wilson, D. S. et al. Orally delivered thioketal nanoparticles loaded with TNF-alpha-siRNA target inflammation and inhibit gene expression in the intestines. Nat. Mater. 9, 923–928 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Place, E. S., Evans, N. D. & Stevens, M. M. Complexity in biomaterials for tissue engineering. Nat. Mater. 8, 457–470 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Baker, S., Thomson, N., Weill, F. X. & Holt, K. E. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science 360, 733–738 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ji, J. F. et al. MicroRNA expression, survival, and response to interferon in liver cancer. N. Engl. J. Med 361, 1437–1447 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pardee, K. et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165, 1255–1266 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi, M. K. et al. A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat. Commun. 9, 3347 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gootenberg, J. S. et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360, 439–444 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Na, W., Nam, D., Lee, H. & Shin, S. Rapid molecular diagnosis of infectious viruses in microfluidics using DNA hydrogel formation. Biosens. Bioelectron 108, 9–13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Venkatesh, S., Wower, J. & Byrne, M. E. Nucleic acid therapeutic carriers with on-demand triggered release. Bioconjugate Chem. 20, 1773–1782 (2009).

    Article  CAS  Google Scholar 

  14. Li, J. et al. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem. Soc. Rev. 45, 1410–1431 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. English, M. A. et al. Programmable CRISPR-responsive smart materials. Science 365, 780–785 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Knott, G. J. & Doudna, J. A. CRISPR-Cas guides the future of genetic engineering. Science 361, 866–869 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang, W. Y. & Marraffini, L. A. CRISPR-Cas: new tools for genetic manipulations from bacterial immunity systems. Annu. Rev.Microbiol. 69, 209–228 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Gootenberg, J. S. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438–442 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Myhrvold, C. et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 360, 444–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O. & Zhang, F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14, 2986–3012 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, S. Y. et al. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 4, 20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen, J. S. et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, S. Y. et al. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res. 28, 491–493 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh, D. et al. Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a). Proc. Natl. Acad. Sci. USA 115, 5444–5449 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Strohkendl, I., Saifuddin, F. A., Rybarski, J. R., Finkelstein, I. J. & Russell, R. Kinetic basis for DNA target specificity of CRISPR-Cas12a. Mol. Cell 71, 816–824 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carlson, R. The changing economics of DNA synthesis. Nat. Biotechnol. 27, 1091–1094 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Gao, M., Gawel, K. & Stokke, B. T. Toehold of dsDNA exchange affects the hydrogel swelling kinetics of a polymer-dsDNA hybrid hydrogel. Soft Matter 7, 1741–1746 (2011).

    Article  CAS  Google Scholar 

  28. Sicilia, G. et al. Programmable polymer-DNA hydrogels with dual input and multiscale responses. Biomater. Sci. 2, 203–211 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Fern, J. & Schulman, R. Modular DNA strand-displacement controllers for directing material expansion. Nat. Commun 9, 3766 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cangialosi, A. et al. DNA sequence-directed shape change of photopatterned hydrogels via high-degree swelling. Science 357, 1126–1129 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Hajian, R. et al. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng 3, 427–437 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Teng, F. et al. Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds. Genome Biol. 20, 15 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kleinstiver, B. P. et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276–282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu, W. K., Wang, Z. J., Xiao, Y., Zhang, S. M. & Wang, J. L. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 7, 843–855 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Barker, K. et al. Biodegradable DNA-enabled poly(ethylene glycol) hydrogels prepared by copper-free click chemistry. J. Biomater. Sci. Polym. Ed. 27, 22–39 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Phelps, E. A. et al. Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv. Mater. 24, 64–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Harrington, L. B. et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362, 839–842 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gobaa, S., Gayet, R. V. & Lutolf, M. P. Artificial niche microarrays for identifying extrinsic cell-fate determinants. Methods Cell Biol. 148, 51–69 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Previtera, M. L. & Langrana, N. A. Preparation of DNA-crosslinked polyacrylamide hydrogels. J. Vis. Exp. 90, e51323 (2014).

    Google Scholar 

  42. Turkevich, J., Stevenson, P. C. & Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc 11, 55–75 (1951).

    Article  Google Scholar 

  43. Wei, X. F. et al. Target-responsive DNA hydrogel mediated “stop-flow” microfluidic paper-based analytic device for rapid, portable and visual detection of multiple targets. Anal. Chem. 87, 4275–4282 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Masters, J. R. & Stacey, G. N. Changing medium and passaging cell lines. Nat. Protoc. 2, 2276–2284 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, H. H., Chou, K. S. & Huang, K. C. Inkjet printing of nanosized silver colloids. Nanotechnology 16, 2436–2441 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Milligan, J. F., Groebe, D. R., Witherell, G. W. & Uhlenbeck, O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin, L. et al. Engineering the direct repeat sequence of crRNA for optimization of FnCpf1-mediated genome editing in human cells. Mol. Ther. 26, 2650–2657 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, P. P. et al. Enhanced Cas12a editing in mammalian cells and zebrafish. Nucleic Acids Res. 47, 4169–4180 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Defense Threat Reduction Agency grant HDTRA1-14-1-0006, the Paul G. Allen Frontiers Group and the Wyss Institute for Biologically Inspired Engineering, Harvard University (J.J.C., H.d.P., L.R.S., A.S.M.). L.R.S. was also supported by CONACyT grant 342369/408970, and N.M.A.-M. was supported by MIT-TATA Center fellowship 2748460. We thank C. Johnston for helpful comments during manuscript editing.

Author information

Authors and Affiliations

Authors

Contributions

R.V.G., H.d.P., M.A.E., L.R.S., P.Q.N., A.S.M. and N.M.A.-M. designed and conducted experiments described in this article and wrote the manuscript. J.J.C. directed the overall research and edited the manuscript.

Corresponding author

Correspondence to James J. Collins.

Ethics declarations

Competing interests

R.V.G., H.d.P., M.A.E., L.R.S., P.Q.N., A.S.M., N.M.A.-M. and J.J.C. are inventors on U.S. Patent Application No. 16/778,524, which covers CRISPR-responsive materials. J.J.C. is a co-founder and director of Sherlock Biosciences.

Additional information

Peer review information Nature Protocols thanks Chase Beisel, Cole DeForest and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references used in the development of this protocol

English, M. A. et al. Science 365, 780–785 (2019): https://doi.org/10.1126/science.aaw5122

Gootenberg, J. S. et al. Science 356, 438–442 (2017): https://doi.org/10.1126/science.aam9321

Pardee, K. et al. Cell 165, 1255–1266 (2016): https://doi.org/10.1016/j.cell.2016.04.059

Supplementary information

Supplementary Information

Supplementary Data 1–3.

Reporting Summary

Supplementary Software 1

Arduino code to record the RFID signal of the modified µPAD

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayet, R.V., de Puig, H., English, M.A. et al. Creating CRISPR-responsive smart materials for diagnostics and programmable cargo release. Nat Protoc 15, 3030–3063 (2020). https://doi.org/10.1038/s41596-020-0367-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0367-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research