NAD tagSeq for transcriptome-wide identification and characterization of NAD+-capped RNAs


Several noncanonical initial nucleotides (NCINs) have been found to cap RNAs and possibly regulate RNA stability, transcription and translation. NAD+ is one of the NCINs that has recently been discovered to cap RNAs in a wide range of species. Identification of the NAD+-capped RNAs (NAD-RNAs) could help to unveil the cap-mediated regulation mechanisms. We previously reported a method termed NAD tagSeq for genome-wide analysis of NAD-RNAs. NAD tagSeq is based on the previously published NAD captureSeq protocol, which applies an enzymatic reaction and a click chemistry reaction to label NAD-RNAs with biotin followed by enrichment with streptavidin resin and identification by RNA sequencing. In the current NAD tagSeq method, NAD-RNAs are labeled with a synthetic RNA tag and identified by direct RNA sequencing based on Oxford Nanopore technology. Compared to NAD captureSeq, NAD tagSeq provides a simpler procedure for direct sequencing of NAD-RNAs and noncapped RNAs and affords information on the whole sequence organization of NAD-RNAs and the ratio of NAD-RNAs to total transcripts. Furthermore, NAD-RNAs can be enriched by hybridizing a complementary DNA probe to the RNA tag, thus increasing the sequencing coverage of NAD-RNAs. The strategy of tagging RNAs with a synthetic RNA tag and identifying them by direct RNA sequencing might be employed in analyzing other NCIN-capped RNAs. The experimental procedure of NAD tagSeq, including RNA extraction, RNA tagging and direct RNA sequencing, takes ~5 d, and initial data analysis can be completed within 2 d.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schema of NAD tagSeq.
Fig. 2: Gel electrophoresis of the purified model NAD-RNA.
Fig. 3: Gel analysis of ligation of model NAD-RNA with tagRNA-azide to obtain tagRNA-NAD-RNA using 10% (wt/vol) denaturing PAGE gel.
Fig. 4: RNA integrity analysis using agarose gel electrophoresis, showing 28S rRNA, 18S rRNA and 5S rRNA from A. thaliana seedling.
Fig. 5: IGV screenshot showing a gene and its corresponding NAD-RNA and noncapped-RNA reads.

Data availability

The data sets analyzed with the current protocol are available in the Gene Expression Omnibus repository under the accession number GSE127755. The web links for the raw data are, and

Code availability

All the software used in this protocol, including our Python script for sorting tagged and untagged RNA, are available in the ‘TagSeqTools’ repository under the Apache License v2.0 ( and as Supplementary Software.


  1. 1.

    Padgett, R. A. New roles for old RNA cap flavors. Nat. Chem. Biol. 15, 317–318 (2019).

    CAS  Article  Google Scholar 

  2. 2.

    Shuman, S. What messenger RNA capping tells us about eukaryotic evolution. Nat. Rev. Mol. Cell Biol. 3, 619–625 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    Ramanathan, A., Robb, G. B. & Chan, S. H. mRNA capping: biological functions and applications. Nucleic Acids Res. 44, 7511–7526 (2016).

    Article  Google Scholar 

  4. 4.

    Kwasnik, A. et al. Arabidopsis DXO1 links RNA turnover and chloroplast function independently of its enzymatic activity. Nucleic Acids Res. 47, 4751–4764 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    Wang, Y. et al. NAD+-capped RNAs are widespread in the Arabidopsis transcriptome and can probably be translated. Proc. Natl Acad. Sci. USA 116, 12094–12102 (2019).

    CAS  PubMed  Google Scholar 

  6. 6.

    Bird, J. G. et al. Highly efficient 5′ capping of mitochondrial RNA with NAD+ and NADH by yeast and human mitochondrial RNA polymerase. eLife 7, e42179 (2018).

    Article  Google Scholar 

  7. 7.

    Bird, J. G. et al. The mechanism of RNA 5′ capping with NAD+, NADH and desphospho-CoA. Nature 535, 444–447 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Julius, C. & Yuzenkova, Y. Bacterial RNA polymerase caps RNA with various cofactors and cell wall precursors. Nucleic Acids Res. 45, 8282–8290 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Grudzien-Nogalska, E., Bird, J. G., Nickels, B. E. & Kiledjian, M. “NAD-capQ” detection and quantitation of NAD caps. RNA 24, 1418–1425 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Verdin, E. NAD+ in aging, metabolism, and neurodegeneration. Science 350, 1208–1213 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Grudzien-Nogalska, E. et al. Structural and mechanistic basis of mammalian Nudt12 RNA deNADding. Nat. Chem. Biol. 15, 575–582 (2019).

    CAS  Article  Google Scholar 

  12. 12.

    Winz, M. L. et al. Capture and sequencing of NAD-capped RNA sequences with NAD captureSeq. Nat. Protoc. 12, 122–149 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Frindert, J. et al. Identification, biosynthesis, and decapping of NAD-capped RNAs in B. subtilis. Cell Rep. 24, 1890–1901 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Walters, R. W. et al. Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 114, 480–485 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Zhang, H. et al. NAD tagSeq reveals that NAD+-capped RNAs are mostly produced from a large number of protein-coding genes in Arabidopsis. Proc. Natl Acad. Sci. USA 116, 12072–12077 (2019).

    CAS  PubMed  Google Scholar 

  16. 16.

    Jiao, X. et al. 5′ end nicotinamide adenine dinucleotide cap in human cells promotes RNA decay through DXO-mediated deNADding. Cell 168, 1015–1027 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Vvedenskaya, I. O. et al. CapZyme-Seq comprehensively defines promoter-sequence determinants for RNA 5’ capping with NAD+. Mol. Cell 70, 553––564 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Jiang, F. et al. Long-read direct RNA sequencing by 5′-Cap capturing reveals the impact of Piwi on the widespread exonization of transposable elements in locusts. RNA Biol. 16, 950–959 (2019).

    Article  Google Scholar 

  19. 19.

    Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Wick, R. R., Judd, L. M. & Holt, K. E. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 20, 129 (2019).

    Article  Google Scholar 

  21. 21.

    Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Depledge, D. P. et al. Direct RNA sequencing on nanopore arrays redefines the transcriptional complexity of a viral pathogen. Nat. Commun. 10, 754 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Mauer, J. et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 541, 371–375 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Warminski, M., Sikorski, P. J., Kowalska, J. & Jemielity, J. Applications of phosphate modification and labeling to study (m)RNA caps. Top. Curr. Chem. 375, 16 (2017).

    Article  Google Scholar 

  25. 25.

    Kowtoniuk, W. E., Shen, Y., Heemstra, J. M., Agarwal, I. & Liu, D. R. A chemical screen for biological small molecule-RNA conjugates reveals CoA-linked RNA. Proc. Natl Acad. Sci. USA 106, 7768–7773 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    Chen, Y. G., Kowtoniuk, W. E., Agarwal, I., Shen, Y. & Liu, D. R. LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nat. Chem. Biol. 5, 879–881 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    Akichika, S. et al. Cap-specific terminal N6-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science 363, eaav0080 (2019).

    CAS  Article  Google Scholar 

  28. 28.

    Beverly, M., Dell, A., Parmar, P. & Houghton, L. Label-free analysis of mRNA capping efficiency using RNase H probes and LC–MS. Anal. Bioanal. Chem. 408, 5021–5030 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Wang, J. et al. Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Res. 47, e130 (2019).

    CAS  Article  Google Scholar 

  30. 30.

    Schwartz, S. & Motorin, Y. Next-generation sequencing technologies for detection of modified nucleotides in RNAs. RNA Biol. 14, 1124–1137 (2017).

    Article  Google Scholar 

  31. 31.

    Cell RepBenjamini, Y. & Speed, T. P. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 40, e72 (2012).

    Article  Google Scholar 

  32. 32.

    Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat. Methods 14, 565–571 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Soneson, C. et al. A comprehensive examination of Nanopore native RNA sequencing for characterization of complex transcriptomes. Nat. Commun. 10, 3359 (2019).

    Article  Google Scholar 

  34. 34.

    Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297–1305 (2019).

    CAS  Article  Google Scholar 

  35. 35.

    Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).

    CAS  Article  Google Scholar 

  36. 36.

    Johnson, M. RNA extraction. Mater. Methods 2, 201 (2012).

    Google Scholar 

  37. 37.

    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Zhong, H., Cai, Z., Yang, Z. & Xia, Y. TagSeqTools: a flexible and comprehensive analysis pipeline for NAD tagSeq data. Preprint at (2020).

  39. 39.

    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data (Babraham Bioinformatics, 2010).

Download references


This work was supported by the National Natural Science Foundation of China (91543202 and 21705137 to Z.C.), Hong Kong Baptist University (SDF 15-1012-P04 and RC-ICRS/16-17/04 to Y.X. and Z.C.), the National Key R&D Program of China (2017YFC1600500 to Z.C.) and the Research Grants Council of Hong Kong (GRF grant nos. 12100415, 12100018, 12100717, 12102719, C2009-19GF and AoE/M-403/16 to Y.X.).

Author information




All authors contributed to the design of the experiments; H. Zhang and X.S. performed experiments; H. Zhong and Z.Y. performed data analysis; all authors analyzed experimental results and contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Yiji Xia or Zongwei Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Shobbir Hussain and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Related links

Key reference using this protocol

Zhang, H. et al. Proc. Natl Acad. Sci. USA 116, 12072–12077 (2019):

This protocol is an extension to Nat. Protoc. 12, 122–149 (2017):

Supplementary information

Supplementary Information

Supplementary Methods and Supplementary Fig. 1.

Reporting Summary

Supplementary Software

Software for processing NAD tagSeq data and demo files.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shao, X., Zhang, H., Yang, Z. et al. NAD tagSeq for transcriptome-wide identification and characterization of NAD+-capped RNAs. Nat Protoc 15, 2813–2836 (2020).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing